Advertisements
Advertisements
Question
In investment, a man can make a profit of ₹ 5,000 with a probability of 0.62 or a loss of ₹ 8,000 with a probability of 0.38. Find the expected gain
Solution
X | 5000 | – 8000 |
P(X = x) | 0.62 | 0.38 |
Let x be the random variable of getting gain in an Investment
E(x) be the random variable of getting gain in an Investment
E(x) = ΣPixi
= (0.62 × 5000) + [0.38 × (– 8000)]
= 3100 – 3040
E(x) = 60
∴ Expected gain = ₹ 60
APPEARS IN
RELATED QUESTIONS
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:(2(x - 1), 1 < x ≤ 2),(0, "otherwise"):}`
If µ and σ2 are the mean and variance of the discrete random variable X and E(X + 3) = 10 and E(X + 3)2 = 116, find µ and σ2
Four fair coins are tossed once. Find the probability mass function, mean and variance for a number of heads that occurred
A lottery with 600 tickets gives one prize of ₹ 200, four prizes of ₹ 100, and six prizes of ₹ 50. If the ticket costs is ₹ 2, find the expected winning amount of a ticket
Choose the correct alternative:
A random variable X has binomial distribution with n = 25 and p = 0.8 then standard deviation of X is
The following table is describing about the probability mass function of the random variable X
x | 3 | 4 | 5 |
P(x) | 0.2 | 0.3 | 0.5 |
Find the standard deviation of x.
What do you understand by Mathematical expectation?
Choose the correct alternative:
Given E(X) = 5 and E(Y) = – 2, then E(X – Y) is
Choose the correct alternative:
A discrete probability distribution may be represented by
Choose the correct alternative:
An expected value of a random variable is equal to it’s