Advertisements
Advertisements
Question
Choose the correct alternative:
If X is a binomial random variable with I expected value 6 and variance 2.4, Then P(X = 5) is
Options
`(10/5)(3/5)^6(2/5)^4`
`(10/5)(3/5)^10`
`(10/5)(3/5)^4(2/5)^4`
`(10/5)(3/5)^5(2/5)^5`
Solution
`(10/5)(3/5)^5(2/5)^5`
APPEARS IN
RELATED QUESTIONS
Two balls are drawn in succession without replacement from an urn containing four red balls and three black balls. Let X be the possible outcomes drawing red balls. Find the probability mass function and mean for X
If µ and σ2 are the mean and variance of the discrete random variable X and E(X + 3) = 10 and E(X + 3)2 = 116, find µ and σ2
Choose the correct alternative:
Four buses carrying 160 students from the same school arrive at a football stadium. The buses carry, respectively, 42, 36, 34, and 48 students. One of the students is randomly selected. Let X denote the number of students that were on the bus carrying the randomly selected student. One of the 4 bus drivers is also randomly selected. Let Y denote the number of students on that bus. Then E(X) and E(Y) respectively are
Choose the correct alternative:
If P(X = 0) = 1 – P(X = 1). If E[X] = 3 Var(X), then P(X = 0) is
Find the expected value for the random variable of an unbiased die
Let X be a random variable defining number of students getting A grade. Find the expected value of X from the given table:
X = x | 0 | 1 | 2 | 3 |
P(X = x) | 0.2 | 0.1 | 0.4 | 0.3 |
Let X be a continuous random variable with probability density function
`"f"_x(x) = {{:(2x",", 0 ≤ x ≤ 1),(0",", "otherwise"):}`
Find the expected value of X
Let X be a continuous random variable with probability density function
f(x) = `{{:(3/x^4",", x ≥ 1),(0",", "otherwise"):}`
Find the mean and variance of X
How do you defi ne variance in terms of Mathematical expectation?
In a business venture a man can make a profit of ₹ 2,000 with a probability of 0.4 or have a loss of ₹ 1,000 with a probability of 0.6. What is his expected, variance and standard deviation of profit?
Let X be a random variable and Y = 2X + 1. What is the variance of Y if variance of X is 5?
Choose the correct alternative:
Probability which explains x is equal to or less than a particular value is classified as
Choose the correct alternative:
If X is a discrete random variable and p(x) is the probability of X, then the expected value of this random variable is equal to
Choose the correct alternative:
Which of the following is not possible in probability distribution?
Choose the correct alternative:
A probability density function may be represented by
Choose the correct alternative:
E[X – E(X)]2 is
Choose the correct alternative:
An expected value of a random variable is equal to it’s
What is the expected value of a game that works as follows: I flip a coin and if tails pay you ₹ 2; if heads pay you ₹ 1. In either case, I also pay you ₹ 0.50