Advertisements
Advertisements
Question
In a business venture a man can make a profit of ₹ 2,000 with a probability of 0.4 or have a loss of ₹ 1,000 with a probability of 0.6. What is his expected, variance and standard deviation of profit?
Solution
Let X be the random variable of getting profit in a business
X | 2000 | – 1000 |
P(X = x) | 0.4 | 0.6 |
E(x) = Σxxpx(x)
= (0.4 × 2000) + [0.6 × (– 1000)]
= 800 – 600
E(X) = 200
∴ Expected value of profit = ₹ 200
E(X2) = Σx2 Px(x)
= [(2000)2 × 0.4] + [(– 1000)2 × 0.6]
= (4000000 × 0.4) + (1000000 × 0.6)
E(X2) = 2200000
Var(X) = E(X2) – [E(X)]2
= 22000000 – (200)2
= 2200000 – 40000
Var(X) = 21,60,000
Variance of his profit = ₹ 21,60,000
Standard deviation(S.D) = `sqrt("Var"(x))`
σ = `sqrt(2160000)`
σ = 1469.69
Standard deviation of his profit is ₹ 1,469.69
APPEARS IN
RELATED QUESTIONS
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:(1/10, x = 2"," 5),(1/5, x = 0"," 1"," 3"," 4):}`
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:(2(x - 1), 1 < x ≤ 2),(0, "otherwise"):}`
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:(1/2 "e"^(x/2), "for" x > 0),(0, "otherwise"):}`
Two balls are drawn in succession without replacement from an urn containing four red balls and three black balls. Let X be the possible outcomes drawing red balls. Find the probability mass function and mean for X
Choose the correct alternative:
If P(X = 0) = 1 – P(X = 1). If E[X] = 3 Var(X), then P(X = 0) is
Find the expected value for the random variable of an unbiased die
Let X be a random variable defining number of students getting A grade. Find the expected value of X from the given table:
X = x | 0 | 1 | 2 | 3 |
P(X = x) | 0.2 | 0.1 | 0.4 | 0.3 |
What do you understand by Mathematical expectation?
A person tosses a coin and is to receive ₹ 4 for a head and is to pay ₹ 2 for a tail. Find the expectation and variance of his gains
Choose the correct alternative:
E[X – E(X)]2 is