Advertisements
Advertisements
प्रश्न
In a business venture a man can make a profit of ₹ 2,000 with a probability of 0.4 or have a loss of ₹ 1,000 with a probability of 0.6. What is his expected, variance and standard deviation of profit?
उत्तर
Let X be the random variable of getting profit in a business
X | 2000 | – 1000 |
P(X = x) | 0.4 | 0.6 |
E(x) = Σxxpx(x)
= (0.4 × 2000) + [0.6 × (– 1000)]
= 800 – 600
E(X) = 200
∴ Expected value of profit = ₹ 200
E(X2) = Σx2 Px(x)
= [(2000)2 × 0.4] + [(– 1000)2 × 0.6]
= (4000000 × 0.4) + (1000000 × 0.6)
E(X2) = 2200000
Var(X) = E(X2) – [E(X)]2
= 22000000 – (200)2
= 2200000 – 40000
Var(X) = 21,60,000
Variance of his profit = ₹ 21,60,000
Standard deviation(S.D) = `sqrt("Var"(x))`
σ = `sqrt(2160000)`
σ = 1469.69
Standard deviation of his profit is ₹ 1,469.69
APPEARS IN
संबंधित प्रश्न
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:(1/10, x = 2"," 5),(1/5, x = 0"," 1"," 3"," 4):}`
A commuter train arrives punctually at a station every half hour. Each morning, a student leaves his house to the train station. Let X denote the amount of time, in minutes, that the student waits for the train from the time he reaches the train station. It is known that the pdf of X is
`f(x) = {{:(1/30, 0 < x < 30),(0, "elsewhere"):}`
Obtain and interpret the expected value of the random variable X
The probability density function of the random variable X is given by
`f(x) = {{:(16x"e"^(-4x), x > 0),(0, x ≤ 0):}`
find the mean and variance of X
Choose the correct alternative:
A random variable X has binomial distribution with n = 25 and p = 0.8 then standard deviation of X is
What are the properties of Mathematical expectation?
Choose the correct alternative:
E[X – E(X)]2 is
Choose the correct alternative:
`int_(-oo)^oo` f(x) dx is always equal to
Choose the correct alternative:
If p(x) = `1/10`, x = 10, then E(X) is
Choose the correct alternative:
An expected value of a random variable is equal to it’s
The time to failure in thousands of hours of an important piece of electronic equipment used in a manufactured DVD player has the density function
f(x) = `{{:(2"e"^(-2x)",", x > 0),(0",", "otherwise"):}`
Find the expected life of this piece of equipment