Advertisements
Advertisements
Question
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:(1/2 "e"^(x/2), "for" x > 0),(0, "otherwise"):}`
Solution
Mean: `mu = "E"("X")`
= `int_0^oo x f(x) "d"x`
= `int_0^oo x 1/2 "e"^((-x)/2) "d"x`
= `1/2 [- 2x"e"^((-x)/2) ]_0^oo + int_0^oo 2"e"^((-x)/2) "d"x`
= `1/2[- 2x"e"^((-x)/2) + (2"e"^((-x)/2))/(- 1/2)]_0^oo`
= `1/2 [- 2x"e"^((-x)/2) - 4"e"^((-x)/2)]_0^oo`
= `1/2 [0 - 0 - (0 - 4)]`
= 2
Variance: `"E"("X"^2)`
= `int_0^oo x^2 f(x) "d"x`
`int u "dv" = "uv" - int "v" "du"`
u = `x int "dv" = int "e"^((-x)/2) "d"x`
du =dx, v = `"e"^((-x)/2)/(- 1/2)`
v = `- 2"e"^((-x)/2)`
Bernoulli's formula
`int"u" "dv" = "uv" - "u'v"_1 + "u''v"_2 - ......`
u = x2, `int"dv" = - int"e"^((-x)/2) "d"x`
u' = 2x, v = `- 2"e"^((-x)/2)`
u'' = 2, v1 = `- 4"e"^((-x)/2)`
u'' = 0, v2 = `- 8"e"^((-x)/2)`
`"E"("X"^2) = 1/2 int_0^oo x^2"e"^((-x)/2) "d"x`
= `1/2[-2x^2 "e"^((-x)/2) - 8x"e"^((-x)/2) - 16"e"^((-x)/2)]_0^oo`
= `1/2 [0 - (- 16"e"^0)]`
= `1/2 xx 16`
= 8
Var(X) = E(X2) – [E(X)]2
= 8 – 4
= 4
APPEARS IN
RELATED QUESTIONS
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:((4 - x)/6, x = 1"," 2"," 3),(0, "otherwise"):}`
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:(2(x - 1), 1 < x ≤ 2),(0, "otherwise"):}`
If µ and σ2 are the mean and variance of the discrete random variable X and E(X + 3) = 10 and E(X + 3)2 = 116, find µ and σ2
Four fair coins are tossed once. Find the probability mass function, mean and variance for a number of heads that occurred
Choose the correct alternative:
Consider a game where the player tosses a six-sided fair die. If the face that comes up is 6, the player wins ₹ 36, otherwise he loses ₹ k2, where k is the face that comes up k = {1, 2, 3, 4, 5}. The expected amount to win at this game in ₹ is
Choose the correct alternative:
On a multiple-choice exam with 3 possible destructive for each of the 5 questions, the probability that a student will get 4 or more correct answers just by guessing is
Choose the correct alternative:
If X is a binomial random variable with I expected value 6 and variance 2.4, Then P(X = 5) is
Let X be a random variable defining number of students getting A grade. Find the expected value of X from the given table:
X = x | 0 | 1 | 2 | 3 |
P(X = x) | 0.2 | 0.1 | 0.4 | 0.3 |
The following table is describing about the probability mass function of the random variable X
x | 3 | 4 | 5 |
P(x) | 0.2 | 0.3 | 0.5 |
Find the standard deviation of x.
In investment, a man can make a profit of ₹ 5,000 with a probability of 0.62 or a loss of ₹ 8,000 with a probability of 0.38. Find the expected gain
How do you defi ne variance in terms of Mathematical expectation?
The number of miles an automobile tire lasts before it reaches a critical point in tread wear can be represented by a p.d.f.
f(x) = `{{:(1/30 "e"^(- x/30)",", "for" x > 0),(0",", "for" x ≤ 0):}`
Find the expected number of miles (in thousands) a tire would last until it reaches the critical tread wear point
Choose the correct alternative:
Value which is obtained by multiplying possible values of a random variable with a probability of occurrence and is equal to the weighted average is called
Choose the correct alternative:
Demand of products per day for three days are 21, 19, 22 units and their respective probabilities are 0.29, 0.40, 0.35. Profit per unit is 0.50 paisa then expected profits for three days are
Choose the correct alternative:
Which of the following is not possible in probability distribution?
Choose the correct alternative:
A discrete probability distribution may be represented by
Choose the correct alternative:
`int_(-oo)^oo` f(x) dx is always equal to
Choose the correct alternative:
A discrete probability function p(x) is always non-negative and always lies between
Prove that if E(X) = 0, then V(X) = E(X2)