Advertisements
Advertisements
Question
A commuter train arrives punctually at a station every half hour. Each morning, a student leaves his house to the train station. Let X denote the amount of time, in minutes, that the student waits for the train from the time he reaches the train station. It is known that the pdf of X is
`f(x) = {{:(1/30, 0 < x < 30),(0, "elsewhere"):}`
Obtain and interpret the expected value of the random variable X
Solution
Given, p.d.f. is `f(x) = {{:(1/30, 0 < x < 30),(0, "elsewhere"):}`
‘X’ is a continuous random variable.
∴ Expected value of X = E(X) = `int_0^30 x f(x) "d"x`
= `int_0^30 x 1/30 "d"x`
= `1/30 [x^2/2]_0^30`
= `1/30[(30 xx 30)/2 - 0]`
= 15 minutes
The average waiting time for the student is 15 minutes.
APPEARS IN
RELATED QUESTIONS
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:(2(x - 1), 1 < x ≤ 2),(0, "otherwise"):}`
Four fair coins are tossed once. Find the probability mass function, mean and variance for a number of heads that occurred
The time to failure in thousands of hours of an electronic equipment used in a manufactured computer has the density function
`f(x) = {{:(3"e"^(-3x), x > 0),(0, "eleswhere"):}`
Find the expected life of this electronic equipment
A lottery with 600 tickets gives one prize of ₹ 200, four prizes of ₹ 100, and six prizes of ₹ 50. If the ticket costs is ₹ 2, find the expected winning amount of a ticket
Choose the correct alternative:
Four buses carrying 160 students from the same school arrive at a football stadium. The buses carry, respectively, 42, 36, 34, and 48 students. One of the students is randomly selected. Let X denote the number of students that were on the bus carrying the randomly selected student. One of the 4 bus drivers is also randomly selected. Let Y denote the number of students on that bus. Then E(X) and E(Y) respectively are
Choose the correct alternative:
On a multiple-choice exam with 3 possible destructive for each of the 5 questions, the probability that a student will get 4 or more correct answers just by guessing is
Choose the correct alternative:
If X is a binomial random variable with I expected value 6 and variance 2.4, Then P(X = 5) is
Let X be a continuous random variable with probability density function
`"f"_x(x) = {{:(2x",", 0 ≤ x ≤ 1),(0",", "otherwise"):}`
Find the expected value of X
Let X be a continuous random variable with probability density function
f(x) = `{{:(3/x^4",", x ≥ 1),(0",", "otherwise"):}`
Find the mean and variance of X
In investment, a man can make a profit of ₹ 5,000 with a probability of 0.62 or a loss of ₹ 8,000 with a probability of 0.38. Find the expected gain
What are the properties of Mathematical expectation?
How do you defi ne variance in terms of Mathematical expectation?
State the definition of Mathematical expectation using continuous random variable
The number of miles an automobile tire lasts before it reaches a critical point in tread wear can be represented by a p.d.f.
f(x) = `{{:(1/30 "e"^(- x/30)",", "for" x > 0),(0",", "for" x ≤ 0):}`
Find the expected number of miles (in thousands) a tire would last until it reaches the critical tread wear point
A person tosses a coin and is to receive ₹ 4 for a head and is to pay ₹ 2 for a tail. Find the expectation and variance of his gains
Choose the correct alternative:
A discrete probability distribution may be represented by
Choose the correct alternative:
`int_(-oo)^oo` f(x) dx is always equal to
Choose the correct alternative:
If p(x) = `1/10`, x = 10, then E(X) is
Choose the correct alternative:
A discrete probability function p(x) is always non-negative and always lies between
The time to failure in thousands of hours of an important piece of electronic equipment used in a manufactured DVD player has the density function
f(x) = `{{:(2"e"^(-2x)",", x > 0),(0",", "otherwise"):}`
Find the expected life of this piece of equipment