Advertisements
Advertisements
Question
The probability density function of the random variable X is given by
`f(x) = {{:(16x"e"^(-4x), x > 0),(0, x ≤ 0):}`
find the mean and variance of X
Solution
Given p.d.f is `f(x) = {{:(16x"e"^(-4x), x > 0),(0, x ≤ 0):}`
Mean: E(X)
= `int_-oo^oo x f(x) "d"x`
= `16int_0^oo x^2 "e"^(-4x) "d"x`
Using integration by parts method twice
Let u = x2
⇒ du = 2x dx
And `int "dv" = int "e"^(-4x)`
v = `"e"^(-4x)/(-4)`
`int "u" "d" = "uv" - int "v" "du"`
`int^2"e"^(-4x) "d"x = (x^2"e"^(-4x))/(-4) + 1/4 int 2x"e"^(-4x) "d"x` .......(1)
= `- (x^2"e"^(-4x))/4 + 1/2 int x"e"^(-4x) "d"x`
∵ Integration by parts method
u = x
⇒ du = dx
And `int "dv" - int"e"^(-4x) ""x`
v = `"e"^(-4x)/(-4)`
`int "u" "dv" = "uv" - int "v" "du"`
`int x"e"^(-4x) "d"x = (-x"e"^(-4x))/4 + 1/4 int "e"^(-4x) "d"x`
= `(-x"e"^(-4x))/4 - 1/16 "e"^(-4x)`
Substituting in (1)
`intx^2"e"^(-4x) "d"x = (x^2"e"^(-4x))/(-4) + 1/2 [(-x"e"^(-4x))/4 - 1/16 e"^(-4x)]`
E(X) = `16[(x^2"e"^(-4x))/(-4) - (x"e"^(-4x))/8 - "e"^(-4x)/32]_0^oo`
= `16[0 - ((-1)/32)]`
= `16[1/32]`
= `1/2`
E(X2] = `int_-oo^oo x^2 f(x) "d"x`
= `16int_0^oo x^3"e"^(-4x) "d"x`
Using integration by parts method
Let u = x3
⇒ du = 3x2 du
And `int "dv" = int "e"^(-4x) "d"x`
⇒ v = `"e"^(-4x)/(-4)`
`int "u" "dv" = "uv" - int "v" "du"`
`intx^3"e"^(-4x) "d"x = - (x^3"e"^(-4x))/4 + 3/4 int"e"^(-4x) x^2 "d"x`
= `- (x^3"e"^(-4x))/4 + 3/4[(x^2"e"^(-4x))/(-4) - (x"e"^(-4x))/8 - "e"^(-4x)/32]`
∵ Using E(X) integration]
= `- (x^3"e"^(-4x))/4 - 3/16 x^2"e"^(-4x) - 3/32 x"e"^(-4x) - 3/128 "e"^(-4x)`
E(X2) = `16[- (x^3""^(-4x))/4 - 3/16 x^2"e"^(-4x) - 3/32 x"e"^(-4x) - 3/128 "e"^(-4x)]_0^oo`
= `16[0 - ((-3)/128)]`
= `16[3/128]`
= `3/8`
Variance Var(X) = E(X2) – [E(X)]2
= `3/8 - 1/4`
= `(3 - 2)/8`
= `1/8`
APPEARS IN
RELATED QUESTIONS
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:(1/10, x = 2"," 5),(1/5, x = 0"," 1"," 3"," 4):}`
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:((4 - x)/6, x = 1"," 2"," 3),(0, "otherwise"):}`
The time to failure in thousands of hours of an electronic equipment used in a manufactured computer has the density function
`f(x) = {{:(3"e"^(-3x), x > 0),(0, "eleswhere"):}`
Find the expected life of this electronic equipment
Choose the correct alternative:
If X is a binomial random variable with I expected value 6 and variance 2.4, Then P(X = 5) is
Let X be a random variable defining number of students getting A grade. Find the expected value of X from the given table:
X = x | 0 | 1 | 2 | 3 |
P(X = x) | 0.2 | 0.1 | 0.4 | 0.3 |
In investment, a man can make a profit of ₹ 5,000 with a probability of 0.62 or a loss of ₹ 8,000 with a probability of 0.38. Find the expected gain
What are the properties of Mathematical expectation?
What do you understand by Mathematical expectation?
In a business venture a man can make a profit of ₹ 2,000 with a probability of 0.4 or have a loss of ₹ 1,000 with a probability of 0.6. What is his expected, variance and standard deviation of profit?
The number of miles an automobile tire lasts before it reaches a critical point in tread wear can be represented by a p.d.f.
f(x) = `{{:(1/30 "e"^(- x/30)",", "for" x > 0),(0",", "for" x ≤ 0):}`
Find the expected number of miles (in thousands) a tire would last until it reaches the critical tread wear point
Let X be a random variable and Y = 2X + 1. What is the variance of Y if variance of X is 5?
Choose the correct alternative:
Probability which explains x is equal to or less than a particular value is classified as
Choose the correct alternative:
If X is a discrete random variable and p(x) is the probability of X, then the expected value of this random variable is equal to
Choose the correct alternative:
A discrete probability distribution may be represented by
Choose the correct alternative:
`int_(-oo)^oo` f(x) dx is always equal to
Choose the correct alternative:
A listing of all the outcomes of an experiment and the probability associated with each outcome is called
Choose the correct alternative:
If p(x) = `1/10`, x = 10, then E(X) is
Choose the correct alternative:
The distribution function F(x) is equal to