Advertisements
Advertisements
प्रश्न
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
उत्तर
In the given problem, we have the sum of the certain number of terms of an A.P. and we need to find the number of terms.
Here, let us take the common difference as d.
So, we are given,
First term (a1) = −14
Fifth term (a5) = 2
Sum of terms (sn) = 40
Now,
`a_5 = a_1 + 4d`
2 = -14 + 4d
2 + 14 = 4d
`d = 16/4`
d= 4
Further, let us find the number of terms whose sum is 40. For that, we will use the formula,
`S_n = n/2 [2a + (n -1)d]`
Where; a = first term for the given A.P.
d = common difference of the given A.P.
n = number of terms
The first term (a1) = −14
The sum of n terms (Sn) = 40
Common difference of the A.P. (d) = 4
So, on substituting the values in the formula for the sum of n terms of an A.P., we get,
`40 = n/2[2(-14) + (n -1) (4)]`
`40 = (n/2) [-28 = (4n -4)]`
`40 = (n/2)[-32 + 4n]`
`40(2)= -32n + 4n^2`
So, we get the following quadratic equation,
`4n^2 - 32n - 80 = 0`
`n^2 - 8n + 20 = 0`
On solving by splitting the middle term, we get,
`n^2 - 10n + 2n + 20 = 0`
`n(n - 10) + 2(n - 10)=0`
`(n + 2)(n - 10)=0`
Further,
n + 2 = 0
n = -2
Or
n - 10 = 0
n= 10
Since the number of terms cannot be negative. Therefore, the number of terms (n) is n = 10
APPEARS IN
संबंधित प्रश्न
An A.P. consists of 50 terms of which 3rd term is 12 and the last term is 106. Find the 29th term of the A.P.
In an AP: Given a = 5, d = 3, an = 50, find n and Sn.
Show that a1, a2,..., an... form an AP where an is defined as below:
an = 9 − 5n
Also, find the sum of the first 15 terms.
In an A.P., if the 5th and 12th terms are 30 and 65 respectively, what is the sum of first 20 terms?
The 8th term of an AP is zero. Prove that its 38th term is triple its 18th term.
The 24th term of an AP is twice its 10th term. Show that its 72nd term is 4 times its 15th term.
Ramkali would need ₹1800 for admission fee and books etc., for her daughter to start going to school from next year. She saved ₹50 in the first month of this year and increased her monthly saving by ₹20. After a year, how much money will she save? Will she be able to fulfil her dream of sending her daughter to school?
Find the common difference of an A.P. whose first term is 5 and the sum of first four terms is half the sum of next four terms.
In an A.P. sum of three consecutive terms is 27 and their products is 504. Find the terms. (Assume that three consecutive terms in an A.P. are a – d, a, a + d.)
The ratio of the 11th term to the 18th term of an AP is 2 : 3. Find the ratio of the 5th term to the 21st term, and also the ratio of the sum of the first five terms to the sum of the first 21 terms.