Advertisements
Advertisements
Question
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
Solution
In the given problem, we have the sum of the certain number of terms of an A.P. and we need to find the number of terms.
Here, let us take the common difference as d.
So, we are given,
First term (a1) = −14
Fifth term (a5) = 2
Sum of terms (sn) = 40
Now,
`a_5 = a_1 + 4d`
2 = -14 + 4d
2 + 14 = 4d
`d = 16/4`
d= 4
Further, let us find the number of terms whose sum is 40. For that, we will use the formula,
`S_n = n/2 [2a + (n -1)d]`
Where; a = first term for the given A.P.
d = common difference of the given A.P.
n = number of terms
The first term (a1) = −14
The sum of n terms (Sn) = 40
Common difference of the A.P. (d) = 4
So, on substituting the values in the formula for the sum of n terms of an A.P., we get,
`40 = n/2[2(-14) + (n -1) (4)]`
`40 = (n/2) [-28 = (4n -4)]`
`40 = (n/2)[-32 + 4n]`
`40(2)= -32n + 4n^2`
So, we get the following quadratic equation,
`4n^2 - 32n - 80 = 0`
`n^2 - 8n + 20 = 0`
On solving by splitting the middle term, we get,
`n^2 - 10n + 2n + 20 = 0`
`n(n - 10) + 2(n - 10)=0`
`(n + 2)(n - 10)=0`
Further,
n + 2 = 0
n = -2
Or
n - 10 = 0
n= 10
Since the number of terms cannot be negative. Therefore, the number of terms (n) is n = 10
APPEARS IN
RELATED QUESTIONS
How many terms of the A.P. 27, 24, 21, .... should be taken so that their sum is zero?
The sum of n, 2n, 3n terms of an A.P. are S1 , S2 , S3 respectively. Prove that S3 = 3(S2 – S1 )
If (m + 1)th term of an A.P is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.
Find the sum 2 + 4 + 6 ... + 200
The first term of an AP is p and its common difference is q. Find its 10th term.
If the sum of a certain number of terms starting from first term of an A.P. is 25, 22, 19, ..., is 116. Find the last term.
If the sums of n terms of two arithmetic progressions are in the ratio \[\frac{3n + 5}{5n - 7}\] , then their nth terms are in the ratio
Q.5
Q.15
In the month of April to June 2022, the exports of passenger cars from India increased by 26% in the corresponding quarter of 2021-22, as per a report. A car manufacturing company planned to produce 1800 cars in 4th year and 2600 cars in 8th year. Assuming that the production increases uniformly by a fixed number every year.![]() |
Based on the above information answer the following questions.
- Find the production in the 1st year
- Find the production in the 12th year.
- Find the total production in first 10 years.
[OR]
In how many years will the total production reach 31200 cars?