Advertisements
Advertisements
प्रश्न
How many terms of the A.P. 25, 22, 19, … are needed to give the sum 116 ? Also find the last term.
उत्तर
A.P. is 25, 22, 19, …
Sum = 116
Here, a = 25, d = 22 – 25 = -3
Let number of terms be n, then
116 = `n/(2)[2a + (n - 1)d]`
⇒ 232 = n[2 x 25 + (n – 1)(– 3)]
⇒ 232 = n[50 – 3n + 3]
⇒ n(53 – 3n)
⇒ 232 = 53n – 3n2
⇒ 3n2 – 53n + 232 = 0 ...`{(∵232 xx 3, = 696),(∴ 696, = -24 xx (-29)),(-53, = -24 - 29):}}`
⇒ 3n2 – 24n – 29n + 232 = 0
⇒ 3n(n – 8) – 29(n – 8) = 0
⇒ (n – 8)(3n – 29) = 0
Either n – 8 = 0,
then n = 8
or
3n – 29 = 0,
then 3n = 29
⇒ n = `(29)/(3)`
which is not possible because of fraction
∴ n = 8
Now, T = a + (n – 1)d
= 25 + 7 x (–3)
= 25 – 21
= 4.
APPEARS IN
संबंधित प्रश्न
Ramkali saved Rs 5 in the first week of a year and then increased her weekly saving by Rs 1.75. If in the nth week, her week, her weekly savings become Rs 20.75, find n.
Find the first term and common difference for the A.P.
`1/4,3/4,5/4,7/4,...`
Choose the correct alternative answer for the following question .
First four terms of an A.P. are ....., whose first term is –2 and common difference is –2.
Q.6
Q.11
What is the sum of an odd numbers between 1 to 50?
A merchant borrows ₹ 1000 and agrees to repay its interest ₹ 140 with principal in 12 monthly instalments. Each instalment being less than the preceding one by ₹ 10. Find the amount of the first instalment
Find the sum of first 17 terms of an AP whose 4th and 9th terms are –15 and –30 respectively.
Read the following passage:
India is competitive manufacturing location due to the low cost of manpower and strong technical and engineering capabilities contributing to higher quality production runs. The production of TV sets in a factory increases uniformly by a fixed number every year. It produced 16000 sets in 6th year and 22600 in 9th year. |
- In which year, the production is 29,200 sets?
- Find the production in the 8th year.
OR
Find the production in first 3 years. - Find the difference of the production in 7th year and 4th year.
The nth term of an Arithmetic Progression (A.P.) is given by the relation Tn = 6(7 – n)..
Find:
- its first term and common difference
- sum of its first 25 terms