Advertisements
Advertisements
Question
How many terms of the A.P. 25, 22, 19, … are needed to give the sum 116 ? Also find the last term.
Solution
A.P. is 25, 22, 19, …
Sum = 116
Here, a = 25, d = 22 – 25 = -3
Let number of terms be n, then
116 = `n/(2)[2a + (n - 1)d]`
⇒ 232 = n[2 x 25 + (n – 1)(– 3)]
⇒ 232 = n[50 – 3n + 3]
⇒ n(53 – 3n)
⇒ 232 = 53n – 3n2
⇒ 3n2 – 53n + 232 = 0 ...`{(∵232 xx 3, = 696),(∴ 696, = -24 xx (-29)),(-53, = -24 - 29):}}`
⇒ 3n2 – 24n – 29n + 232 = 0
⇒ 3n(n – 8) – 29(n – 8) = 0
⇒ (n – 8)(3n – 29) = 0
Either n – 8 = 0,
then n = 8
or
3n – 29 = 0,
then 3n = 29
⇒ n = `(29)/(3)`
which is not possible because of fraction
∴ n = 8
Now, T = a + (n – 1)d
= 25 + 7 x (–3)
= 25 – 21
= 4.
APPEARS IN
RELATED QUESTIONS
Ramkali required Rs 2,500 after 12 weeks to send her daughter to school. She saved Rs 100 in the first week and increased her weekly saving by Rs 20 every week. Find whether she will be able to send her daughter to school after 12 weeks.
What value is generated in the above situation?
How many multiples of 4 lie between 10 and 250?
If the sum of first m terms of an A.P. is the same as the sum of its first n terms, show that the sum of its first (m + n) terms is zero
If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.
Find the sum of the following arithmetic progressions:
1, 3, 5, 7, ... to 12 terms
Write an A.P. whose first term is a and common difference is d in the following.
a = –1.25, d = 3
Choose the correct alternative answer for the following question .
In an A.P. 1st term is 1 and the last term is 20. The sum of all terms is = 399 then n = ....
The first term of an A. P. is 5 and the common difference is 4. Complete the following activity and find the sum of the first 12 terms of the A. P.
a = 5, d = 4, s12 = ?
`s_n = n/2 [ square ]`
`s_12 = 12/2 [10 +square]`
`= 6 × square `
` =square`
The sum of the first n terms of an A.P. is 4n2 + 2n. Find the nth term of this A.P.
If the sum of three numbers in an A.P. is 9 and their product is 24, then numbers are ______.