Advertisements
Advertisements
Question
If the sum of first m terms of an A.P. is the same as the sum of its first n terms, show that the sum of its first (m + n) terms is zero
Solution
Let a be the first term and d be the common difference of the AP.
It is given that the sum of first m terms is same as the sum of its first n terms.
∴Sm = Sn
⇒`m/2`[2a +(m − 1)d] = `n/2`[2a + (n − 1)d]
⇒2am +m(m − 1)d = 2an + n(n − 1)d
⇒2a(m − n) =[(n2 − n)−(m2 - m)]d
⇒2a(m − n) =[(m − n) − (n − m)(n + m)]d
⇒2a(m − n) = −(m − n)(−1 + m +n)d
⇒2a = −(m + n − 1)d .....(1)
Now,
Sum of first (m + n) terms
`= S_"m+n"`
`= (m+2)/2 [2a + (m + n - 1)d]`
`=(m+2)/2 [-(m+n-1)d + (m+n-1)d]` [From 1]
`= "m+n"/2 xx 0`
= 0
Thus, the sum of first (m + n) terms of the AP is zero.
APPEARS IN
RELATED QUESTIONS
If the sum of first 7 terms of an A.P. is 49 and that of its first 17 terms is 289, find the sum of first n terms of the A.P.
Find the sum of first 30 terms of an A.P. whose second term is 2 and seventh term is 22
The sum of n terms of three arithmetical progression are S1 , S2 and S3 . The first term of each is unity and the common differences are 1, 2 and 3 respectively. Prove that S1 + S3 = 2S2
Find the sum of the following APs:
2, 7, 12, ..., to 10 terms.
Find the sum of first 51 terms of an AP whose second and third terms are 14 and 18 respectively.
Find the sum of the following arithmetic progressions:
−26, −24, −22, …. to 36 terms
Find the sum of first 10 terms of the A.P.
4 + 6 + 8 + .............
If a = 6 and d = 10, then find S10
Find the sum:
`(a - b)/(a + b) + (3a - 2b)/(a + b) + (5a - 3b)/(a + b) +` ... to 11 terms
In an A.P., if Sn = 3n2 + 5n and ak = 164, find the value of k.