मराठी

How Much Charge is Required for the Reduction of 1 Mol of Zn2+ to Zn? - Chemistry

Advertisements
Advertisements

प्रश्न

How much charge is required for the reduction of 1 mol of Zn2+ to Zn?

उत्तर

Zn2+ + 2e- → Zn

Number of electrons involved = 2

Charge required for the reduction of Zn2+ = 2F

We know

1F = 96,487 C

Thus,

2F = 2 × 96487 = 1,92,974 C

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Patna Set 2

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Write the Nemst equation and explain the terms involved.


Calculate the value of Ecell at 298 K for the following cell:

`(Al)/(Al^(3+)) (0.01M) || Sn^(2+) ((0.015 M))/(Sn)`

`E°  _(Al^(3+))/(AI)= -1.66 " Volt and " E° _(Sn^(2+)) /(Sn) = -0.14` volt


Complete the following statement by selecting the correct alternative from the choices given:  

For a spontaneous reaction ΔG° and E° cell will be respectively:


What is the pH of HCl solution when the hydrogen gas electrode shows a potential of −0.59 V at standard temperature and pressure?


The cell potential for the given cell at 298 K Pt | H2 (g, 1 bar) | H+ (aq) | | Cu2+ (aq) | Cu(s) is 0.31 V. The pH of the acidic solution is found to be 3, whereas the concentration of Cu2+ is 10-x M. The value of x is ______.

[Given: (\[\ce{E_{Cu^{2+}/Cu}}\]) = 0.34 V and `(2.303 " RT")/"F"` = 0.06 V]


Calculate the emf of the following cell at 298 K.

\[\ce{Cu/Cu^{2+}_{(0.025 M)}//Ag^+_{(0.005 M)}/Ag}\]

Given `"E"_("Cu"^(2+)//"Cu")^circ` = 0.34 V, `"E"_("Ag"^+//"Ag")^circ` = 0.80 V

1 Faraday = 96500 C mol -1


Calculate the value of \[\ce{E^\circ}\]cell, E cell and ΔG that can be obtained from the following cell at 298 K.

\[\ce{Al/Al^3+ _{(0.01 M)} // Sn^{2+} _{(0.015 M)}/Sn}\]

Given: \[\ce{E^\circ  Al^3+/Al = -1.66 V; E^\circ\phantom{.}Sn^2+/Sn = -0.14 V}\]


Write the Nernst equation and emf of the following cell at 298 K:

\[\ce{Fe_{(s)} | Fe^{2+} (0.001 M) || H^+ (1 M) | H2_{(g)} (1 bar) | Pt_{(s)}}\]


Write the Nernst equation and emf of the following cell at 298 K:

\[\ce{Sn_{(s)} | Sn^{2+} (0.050 M) || H^+ (0.020 M) | H2_{(g)} (1 bar) | Pt_{(s)}}\]


Write the Nernst equation and emf of the following cell at 298 K:

\[\ce{Pt_{(s)} | Br^- (0.010 M) | Br2_{(l)} || H^+ (0.030 M) | H2_{(g)} (1 bar) | Pt_{(s)}}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×