Advertisements
Advertisements
प्रश्न
How much is the angular momentum of an electron when it is orbiting in the second Bohr orbit of hydrogen atom?
उत्तर
L = `"nh"/(2pi) = "2h"/(2pi) = "h"/pi`
APPEARS IN
संबंधित प्रश्न
Find the frequency of revolution of an electron in Bohr’s 2nd orbit; if the radius and speed of electron in that orbit is 2.14 × 10-10 m and 1.09 × 106 m/s respectively. [π= 3.142]
Using Bohr’s postulates, obtain the expression for the total energy of the electron in the stationary states of the hydrogen atom. Hence draw the energy level diagram showing how the line spectra corresponding to Balmer series occur due to transition between energy levels.
In a laser tube, all the photons
Answer the following question.
Calculate the de-Broglie wavelength associated with the electron revolving in the first excited state of the hydrogen atom. The ground state energy of the hydrogen atom is – 13.6 eV.
Which of the following is/are CORRECT according to Bohr's atomic theory?
(I) Energy is emitted when electron moves from a higher stationary state to a lower one.
(II) Orbits are arranged concentrically around the nucleus in an increasing order of energy.
(III) The energy of an electron in the orbit changes with time.
The energy of an electron in an excited hydrogen atom is - 3.4 eV. Calculate the angular momentum of the electron according to Bohr's theory. (h = 6.626 × 10-34 Js)
On the basis of Bohr's model, the approximate radius of Li++ ion in its ground state ifthe Bohr radius is a0 = 53 pm :
The angular momentum of electron in nth orbit is given by
Orbits of a particle moving in a circle are such that the perimeter of the orbit equals an integer number of de-Broglie wavelengths of the particle. For a charged particle moving in a plane perpendicular to a magnetic field, the radius of the nth orbital will therefore be proportional to:
On the basis of Bohr's theory, derive an expression for the radius of the nth orbit of an electron of hydrogen atom.