Advertisements
Advertisements
प्रश्न
If \[\frac{1}{x + 2}, \frac{1}{x + 3}, \frac{1}{x + 5}\] are in A.P. Then, x =
पर्याय
5
3
1
2
उत्तर
Here, we are given three terms,
First term (a1) = `1/(x + 2)`
Second term (a2) = `1/(x + 3)`
Third term (a3) = `1/(x + 5)`
We need to find the value of x for which these terms are in A.P. So, in an A.P. the difference of two adjacent terms is always constant. So, we get,
d = a2 - a1
`d = (1/(x + 3)) - (1/(x + 2 ))`
`d = ((x + 2) - (x - 3))/((x + 2)(x + 3))`
`d =(x +2-x - 3)/((x + 2)(x + 3))`
`d =( -1) /((x + 2)(x +3 ))` ...............(1)
Also,
`d = a_3 - a_2`
`d = (1/(x +5 ) ) - (1/(x + 3))`
`d = (( x + 3) - ( x + 5) ) /((x + 5)(x +3 ))`
`d = (x +3 - x - 5)/((x + 5)(x + 3))`
`d = (-2)/((x + 5)(x + 3))` .............(2)
Now, on equating (1) and (2), we get,
`(-2)/((x +5)(x + 3)) = (-1)/((x + 3)(x +2 ))`
2(x +3 )( x + 2) = 1 (x +5 ) ( x +3 )
2x + 4 = x +5
2x - x = 5 - 4
x = 1
Therefore, for x = 1 , these three terms will form an A.P.
APPEARS IN
संबंधित प्रश्न
Find the sum of all even integers between 101 and 999.
In a flower bed, there are 43 rose plants in the first row, 41 in second, 39 in the third, and so on. There are 11 rose plants in the last row. How many rows are there in the flower bed?
In an A.P. 17th term is 7 more than its 10th term. Find the common difference.
First term and the common differences of an A.P. are 6 and 3 respectively; find S27.
Solution: First term = a = 6, common difference = d = 3, S27 = ?
Sn = `"n"/2 [square + ("n" - 1)"d"]` - Formula
Sn = `27/2 [12 + (27 - 1)square]`
= `27/2 xx square`
= 27 × 45
S27 = `square`
Choose the correct alternative answer for the following question .
What is the sum of the first 30 natural numbers ?
If m times the mth term of an A.P. is eqaul to n times nth term then show that the (m + n)th term of the A.P. is zero.
If Sn denote the sum of n terms of an A.P. with first term a and common difference dsuch that \[\frac{Sx}{Skx}\] is independent of x, then
Determine the sum of first 100 terms of given A.P. 12, 14, 16, 18, 20, ......
Activity :- Here, a = 12, d = `square`, n = 100, S100 = ?
Sn = `"n"/2 [square + ("n" - 1)"d"]`
S100 = `square/2 [24 + (100 - 1)"d"]`
= `50(24 + square)`
= `square`
= `square`
The sum of all two digit odd numbers is ______.
The sum of n terms of an A.P. is 3n2. The second term of this A.P. is ______.