Advertisements
Advertisements
प्रश्न
If 2n+2 – 2n+1 + 2n = c × 2n, find the value of c.
उत्तर
We have, 2n+2 + 2n+1 + 2n = c × 2n
⇒ 2n22 + 2n21 + 2n = c × 2n ......[∴ am+n = am × an]
⇒ 2n[22 – 21 + 1] = c × 2n ......[Taking common 2n in LHS]
⇒ 2n[4 – 2 + 1] = c × 2n
⇒ 3 × 2n = c × 2n
3 × 2n × 2–n =c × 3n × c–n ......[Multiplying both sides by 2–n]
⇒ 3 × 2n–1 = c × 2n–n ......[∴ am+n = am × an]
⇒ 3 × 20 = c × 20
⇒ 3 × 1 = c × 1 ......[∴ a0 = 1]
∴ 3 = c
APPEARS IN
संबंधित प्रश्न
Using laws of exponents, simplify and write the answer in exponential form:
a3 × a2
Simplify and express the following in exponential form:
20 × 30 × 40
Express the following as a product of prime factors only in exponential form:
768
Solve: (-3)2 × (-3)3.
Solve: `((-2)/5)^2 xx ((-2)/5)^3`
Evaluate: `(1/2)^(-5)`
Simplify the following.
72 × 34
If 21998 – 21997 – 21996 + 21995 = k.21995, then the value of k is ______.
(10 + 10)10 = 1010 + 1010