Advertisements
Advertisements
प्रश्न
If `{ 3x - 5y }/ ( 5z + 3y ) = ( x + 5z )/( y - 5x ) = ( y - z )/ ( x - z )`then show that every ratio = `x/y`.
उत्तर
`( 3x - 5y )/( 5z + 3y) = ( x +5z )/( y - 5x ) = ( y - z )/( x -z )` ...[Multiplying numerator and denominator of third ratio by 5]
⇒ `( 3x - 5y )/( 5z + 3y) = ( x +5z )/( y - 5x ) = [5( y - z )]/ [5( x - z )]`
`= [( 3x - 5y ) + ( x + 5z ) + 5( y - z )]/[( 5z +3y) + ( y - 5x) + 5( x - z )]` ...( Theorem of equal ratios)
⇒ `[3x - 5y + x + 5z + 5y - 5z]/[5z +3y + y - 5x + 5x - 5z ]`
⇒ `[3x - cancel(5y) + x + cancel(5z) + cancel(5y) - cancel(5z)]/[cancel(5z) +3y + y - cancel(5x) + cancel(5x) - cancel(5z) ]`
⇒ `[4x]/[ 4y]`
⇒ `x /y`
APPEARS IN
संबंधित प्रश्न
Fill in the blanks of the following.
`x/7 = y/3 = (3x + 5y)/("_____") = (7x -9y)/("_____")`
Fill in the blanks of the following.
`a/3 = b/4 = c/7 = (a-2b+3c)/("______") = ("______")/ (6 - 8 +14)`
If a(y + z) = b(z + x) = c(x + y) and out of a, b, c no two of them are equal then show that,
`(y - z)/[a ( b - c )] = ( z - x)/[ b ( c - a)] = ( x - y)/[c ( a - b )]`
If `x/[3x - y -z] = y/[3y - z -x] = z/[3z -x -y]` and x + y + z ≠ 0 then show that the value of each ratio is equal to 1.
If `(y + z)/a = (z + x )/b = (x + y)/c` then show that `x/[b + c - a ] = y/[c + a - b] = z/(a + b - c)`
Solve.
`[ 16x^2 - 20x +9]/[ 8x^2 + 12x + 21] = ( 4x - 5 )/( 2x + 3)`
Solve.
`( 5y^2 + 40y - 12)/( 5y + 10y^2 - 4) = ( y + 8)/( 1 + 2y)`
Solve:
`[12x^2 + 18x + 42]/[ 18 x^2 + 12x +58 ] = [ 2x + 3]/[ 3x + 2]`
If `[ 2x - 3y ]/[ 3z + y] = [ z - y ]/[ z - x ] = [ x + 3z ]/[ 2y - 3x]` then prove that every ratio = `x/y`.
If `[by + cz ]/[b^2 + c^2] = [cz + ax]/[c^2 + a^2] = [ax + by]/[a^2 + b^2]` then prove that `x/a= y/b = z/c`