Advertisements
Advertisements
प्रश्न
Solve.
`( 5y^2 + 40y - 12)/( 5y + 10y^2 - 4) = ( y + 8)/( 1 + 2y)`
उत्तर
`( 5y^2 + 40y - 12)/( 5y + 10y^2 - 4) = ( y + 8)/( 1 + 2y)`
If y = 0, then `[5 xx 0 + 40 xx 0 - 12]/[ 5 xx 0 + 10 xx 0 - 4 ] = (0+8)/( 1 + 2 xx 0 ) ⇒ { -12}/{ - 4 } = 8/1`
So, y = 0 is not a solution of the given equation.
Now,
⇒ `( 5y^2 + 40y - 12)/( 5y + 10y^2 - 4) = [5y( y + 8)]/[ 5y( 1 +2y)]` ...[Multiplying numerator and denominator of second ratio by 5y]
⇒ `[ 5y^2 + 40y - 12 - 5y^2 - 40y ]/[ 5y + 10y^2 - 4 - 5y - 10y^2 ]` ...(Theorem of equal ratios)
⇒ `[-12]/[-4]`
`therefore ( y + 8)/( 1 +2y) = [-12]/[-4] = 3/1`
⇒ y + 8 = 3(1 + 2y)
⇒ y + 8 = 3 + 6y
⇒ 6y − y = 8 − 3
⇒ 5y = 5
⇒ y = 1
Thus, the solution of the given equation is y = 1.
APPEARS IN
संबंधित प्रश्न
Fill in the blanks of the following.
`a/3 = b/4 = c/7 = (a-2b+3c)/("______") = ("______")/ (6 - 8 +14)`
If a(y + z) = b(z + x) = c(x + y) and out of a, b, c no two of them are equal then show that,
`(y - z)/[a ( b - c )] = ( z - x)/[ b ( c - a)] = ( x - y)/[c ( a - b )]`
If `x/[3x - y -z] = y/[3y - z -x] = z/[3z -x -y]` and x + y + z ≠ 0 then show that the value of each ratio is equal to 1.
If `[ax + by]/( x + y) = ( bx + az )/(x + z) = (ay + bz)/[y + z]` and `x + y + z ≠ 0 ` then show that `[a + b]/2`.
If `(y + z)/a = (z + x )/b = (x + y)/c` then show that `x/[b + c - a ] = y/[c + a - b] = z/(a + b - c)`
If `{ 3x - 5y }/ ( 5z + 3y ) = ( x + 5z )/( y - 5x ) = ( y - z )/ ( x - z )`then show that every ratio = `x/y`.
Solve.
`[ 16x^2 - 20x +9]/[ 8x^2 + 12x + 21] = ( 4x - 5 )/( 2x + 3)`
Solve:
`[12x^2 + 18x + 42]/[ 18 x^2 + 12x +58 ] = [ 2x + 3]/[ 3x + 2]`
If `[ 2x - 3y ]/[ 3z + y] = [ z - y ]/[ z - x ] = [ x + 3z ]/[ 2y - 3x]` then prove that every ratio = `x/y`.
If `[by + cz ]/[b^2 + c^2] = [cz + ax]/[c^2 + a^2] = [ax + by]/[a^2 + b^2]` then prove that `x/a= y/b = z/c`