English
Maharashtra State BoardSSC (English Medium) 9th Standard

Solve. 5y2+40y-125y+10y2-4=y+81+2y - Algebra

Advertisements
Advertisements

Question

Solve. 

`( 5y^2 + 40y - 12)/( 5y + 10y^2 - 4) = ( y + 8)/( 1 + 2y)`

Sum

Solution

`( 5y^2 + 40y - 12)/( 5y + 10y^2 - 4) = ( y + 8)/( 1 + 2y)`

If y = 0, then `[5 xx 0 + 40 xx 0 - 12]/[ 5 xx 0 + 10 xx 0 - 4 ] = (0+8)/( 1 + 2 xx 0 ) ⇒ { -12}/{ - 4 } = 8/1`

So, y = 0 is not a solution of the given equation.

Now,

⇒ `( 5y^2 + 40y - 12)/( 5y + 10y^2 - 4) = [5y( y + 8)]/[ 5y( 1 +2y)]`    ...[Multiplying numerator and denominator of second ratio by 5y]

⇒ `[ 5y^2 + 40y - 12 - 5y^2 - 40y ]/[ 5y + 10y^2 - 4 - 5y - 10y^2 ]`    ...(Theorem of equal ratios)

⇒ `[-12]/[-4]`

`therefore ( y + 8)/( 1 +2y) = [-12]/[-4] = 3/1`

⇒ y + 8 = 3(1 + 2y)

⇒ y + 8 = 3 + 6y

⇒ 6y − y = 8 − 3

⇒ 5y = 5

⇒ y = 1

Thus, the solution of the given equation is y = 1.

shaalaa.com
Theorem on Equal Ratios
  Is there an error in this question or solution?
Chapter 4: Ratio and Proportion - Practice Set 4.4 [Page 74]

APPEARS IN

Balbharati Algebra (Mathematics 1) [English] 9 Standard Maharashtra State Board
Chapter 4 Ratio and Proportion
Practice Set 4.4 | Q (4) (ii) | Page 74
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×