Advertisements
Advertisements
Question
Fill in the blanks of the following.
`x/7 = y/3 = (3x + 5y)/("_____") = (7x -9y)/("_____")`
Solution
`x/7 = y/3 = (3x + 5y)/bb(36) = (7x -9y)/bb(22)`
Explanation:
`x/7 = y/3 = (3 xx x)/(3 xx 7) = (5 xx y)/( 5 xx 3)`
⇒ `x/7 = y/3 = [3x]/21 = [5y]/15 = (3x + 5y)/( 21 + 15)` ...(Theorem of equal ratios)
⇒ `x/7 = y/3 = (3x+5y)/36`
Also,
`x/7 = y/3 = (7 xx x)/( 7 xx 7) = ( -9 xx y)/( -9 xx 3)`
⇒ `x/7 = y/3 = (7x)/( 49) = ( -9y)/( -27) = (7x - 9y)/[49 + (- 27)]` ...(Theorem of equal ratios)
⇒ `x/7 = y/3 = ( 7x - 9y)/22`
`therefore x/7 = y/3 = [3x + 5y]/36 = [ 7x - 9y]/22`
APPEARS IN
RELATED QUESTIONS
Fill in the blanks of the following.
`a/3 = b/4 = c/7 = (a-2b+3c)/("______") = ("______")/ (6 - 8 +14)`
If a(y + z) = b(z + x) = c(x + y) and out of a, b, c no two of them are equal then show that,
`(y - z)/[a ( b - c )] = ( z - x)/[ b ( c - a)] = ( x - y)/[c ( a - b )]`
If `x/[3x - y -z] = y/[3y - z -x] = z/[3z -x -y]` and x + y + z ≠ 0 then show that the value of each ratio is equal to 1.
If `[ax + by]/( x + y) = ( bx + az )/(x + z) = (ay + bz)/[y + z]` and `x + y + z ≠ 0 ` then show that `[a + b]/2`.
If `(y + z)/a = (z + x )/b = (x + y)/c` then show that `x/[b + c - a ] = y/[c + a - b] = z/(a + b - c)`
If `{ 3x - 5y }/ ( 5z + 3y ) = ( x + 5z )/( y - 5x ) = ( y - z )/ ( x - z )`then show that every ratio = `x/y`.
Solve.
`[ 16x^2 - 20x +9]/[ 8x^2 + 12x + 21] = ( 4x - 5 )/( 2x + 3)`
Solve.
`( 5y^2 + 40y - 12)/( 5y + 10y^2 - 4) = ( y + 8)/( 1 + 2y)`
Solve:
`[12x^2 + 18x + 42]/[ 18 x^2 + 12x +58 ] = [ 2x + 3]/[ 3x + 2]`
If `[ 2x - 3y ]/[ 3z + y] = [ z - y ]/[ z - x ] = [ x + 3z ]/[ 2y - 3x]` then prove that every ratio = `x/y`.