English
Maharashtra State BoardSSC (English Medium) 9th Standard

If x3x-y-z=y3y-z-x=z3z-x-y and x + y + z ≠ 0 then show that the value of each ratio is equal to 1. - Algebra

Advertisements
Advertisements

Question

If `x/[3x - y -z] = y/[3y - z -x] = z/[3z -x -y]` and x + y + z ≠ 0 then show that the value of each ratio is equal to 1.

Sum

Solution

Let `x/[3x - y -z] = y/[3y - z -x] = z/[3z -x -y]` = k

∴ k = `[ x + y + z ]/[( 3x- y -z) + ( 3y - z -x ) + ( 3z - x -y)]`    ...(Theorem of equal ratios)

∴ k = `(x + y + z)/(3x - x - x + 3y - y - y + 3z - z - z)`

      = `(x + y + z)/(x + y + z)`

∴ k = 1   ...[∵ x + y + z ≠ 0]

∴ Each ratio = 1

shaalaa.com
Theorem on Equal Ratios
  Is there an error in this question or solution?
Chapter 4: Ratio and Proportion - Practice Set 4.4 [Page 73]

APPEARS IN

Balbharati Algebra (Mathematics 1) [English] 9 Standard Maharashtra State Board
Chapter 4 Ratio and Proportion
Practice Set 4.4 | Q (3) (ii) | Page 73
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×