Advertisements
Advertisements
प्रश्न
If −5 is a root of the quadratic equation\[2 x^2 + px - 15 = 0\] and the quadratic equation \[p( x^2 + x) + k = 0\] has equal roots, find the value of k.
उत्तर
The given quadratic equation is \[2 x^2 + px - 15 = 0\] and one root is −5.
Then, it satisfies the given equation.
\[2 \left( - 5 \right)^2 + p\left( - 5 \right) - 15 = 0\]
\[ \Rightarrow 50 - 5p - 15 = 0\]
\[ \Rightarrow - 5p = - 35\]
\[ \Rightarrow p = 7\]
Putting the value of p, we get
\[7\left( x^2 + x \right) + k = 0\]
\[ \Rightarrow 7 x^2 + 7x + k = 0\]
Here,
\[a = 7, b = 7 \text { and } c = k\].
As we know that \[D = b^2 - 4ac\]
Putting the values of \[a = 7, b = 7 \text { and } c = k\]
\[D = \left( 7 \right)^2 - 4\left( 7 \right)\left( k \right)\]
\[ = 49 - 28k\]
The given equation will have real and equal roots, if D = 0
Thus,
\[49 - 28k = 0\]
\[\Rightarrow 28k = 49\]
\[ \Rightarrow k = \frac{49}{28}\]
\[ \Rightarrow k = \frac{7}{4}\]
Therefore, the value of k is \[\frac{7}{4}\].
APPEARS IN
संबंधित प्रश्न
Solve for x
`(x - 1)/(2x + 1) + (2x + 1)/(x - 1) = 2, "where x" != -1/2, 1`
Solve the following quadratic equations by factorization:
5x2 - 3x - 2 = 0
Three consecutive positive integers are such that the sum of the square of the first and the product of other two is 46, find the integers.
The sum of the squares of two consecutive multiples of 7 is 637. Find the multiples ?
Solve the following equation: 4x2 + 4 bx - (a2 - b2) = 0
Solve equation using factorisation method:
`(x - 3)/(x + 3) + (x + 3)/(x - 3) = 2 1/2`
A two digit number is such that the product of its digit is 14. When 45 is added to the number, then the digit interchange their places. Find the number.
Car A travels x km for every litre of petrol, while car B travels (x + 5) km for every litre of petrol.
If car A use 4 litre of petrol more than car B in covering the 400 km, write down and equation in x and solve it to determine the number of litre of petrol used by car B for the journey.
Solve the following equation by factorization
`sqrt(x(x - 7)) = 3sqrt(2)`
Find the roots of the following quadratic equation by the factorisation method:
`2x^2 + 5/3x - 2 = 0`