Advertisements
Advertisements
प्रश्न
If `"a" - 1/"a"=4`, find : `"a"^2+1/"a"^2`
उत्तर
`("a"-1/"a")^2="a"^2+1/"a"^2-2`
`⇒(4)^2="a"^2+1/"a"^2-2`
`⇒16="a"^2+1/"a"^2-2`
`⇒16+2="a"^2+1/"a"^2`
`⇒18="a"^2+1/"a"^2`
`∴"a"^2+1/"a"^2=18`
Alternative Method :
`"a" -1/"a"=4`
`⇒("a"-1/"a")^2=(4)^2`
`⇒"a"^2+1/"a"^2-2=16`
`⇒"a"^2+1/"a"^2=16+2`
`⇒"a"^2+1/"a"^2=18`
APPEARS IN
संबंधित प्रश्न
If a+b=5 and ab = 6, find a2 + b2
If a2 + b2 = 29 and ab = 10, find : a − b
If a2 + b2= 10 and ab = 3; find : a – b
If a2 + b2= 10 and ab = 3; find : a + b
Find : `"a"^3+1/"a"^3`, if `"a" +1/"a"=5`.
If `2"x"-1/(2"x")=4`, find : `4"x"^2+1/(4"x"^2)`
If `3"x"+1/(3"x")=3`, find : `27"x"^3+1/(27"x"^3)`
If a2 + b2 = 41 and ab = 4, find : a – b
If a + b = 8 and ab = 15, find : a3 + b3.
The difference between the two numbers is 5 and their products are 14. Find the difference between their cubes.