Advertisements
Advertisements
प्रश्न
If `3"x"+1/(3"x")=3`, find : `27"x"^3+1/(27"x"^3)`
उत्तर
`3"x"+1/"3x"=3`
`⇒(3"x"+1/"3x")^3=(3)^3`
`⇒(3"x")^3+(1/"3x")^3+3xx3"x"xx1/"3x"(3"x"+1/"3x")=27`
`⇒27"x"^3+1/"27x"^3+3(3"x"+1/"3x")=27`
`⇒27"x"^3+1/"27x"^3+3(3)=27`
`⇒27"x"^3+1/"27x"^3+9=27`
`⇒27"x"^3+1/"27x"^3=27-9`
`⇒27"x"^3+1/"27x"^3=18`
APPEARS IN
संबंधित प्रश्न
If a+b=5 and ab = 6, find a2 + b2
If `"a" + 1/"a"=3`, find `"a"^2+1/"a"^2`
If a + b + c = 10 and a2 + b2 + c2 = 38, find : ab + bc + ca
If a + b = 6 and ab=8, find : a3 + b3.
Find : `"a"^3+1/"a"^3`, if `"a" +1/"a"=5`.
If `2"x"-1/(2"x")=4`, find : `4"x"^2+1/(4"x"^2)`
If a + b + c = 9 and ab + bc + ca = 15, find: a2 + b2 + c2.
If a + b + c = 11 and a2 + b2 + c2 = 81, find : ab + bc + ca.
If 3x – 4y = 5 and xy = 3, find : 27x3 – 64y3.
If a + b = 8 and ab = 15, find : a3 + b3.