Advertisements
Advertisements
प्रश्न
If `3"x"+1/(3"x")=3`, find : `27"x"^3+1/(27"x"^3)`
उत्तर
`3"x"+1/"3x"=3`
`⇒(3"x"+1/"3x")^3=(3)^3`
`⇒(3"x")^3+(1/"3x")^3+3xx3"x"xx1/"3x"(3"x"+1/"3x")=27`
`⇒27"x"^3+1/"27x"^3+3(3"x"+1/"3x")=27`
`⇒27"x"^3+1/"27x"^3+3(3)=27`
`⇒27"x"^3+1/"27x"^3+9=27`
`⇒27"x"^3+1/"27x"^3=27-9`
`⇒27"x"^3+1/"27x"^3=18`
APPEARS IN
संबंधित प्रश्न
If a2 + b2= 10 and ab = 3; find : a + b
If `"a"^2+ 1/"a"^2=23`, find : `"a" +1/"a"`
Find: a2 + b2 + c2, if a + b + c = 9 and ab + bc + ca = 24
If a – b = 3 and ab = 10, find : a3 – b3.
Find : `"a"^3-1/"a"^3`, if `"a" -1/"a"=4`.
If a + b + c = 9 and ab + bc + ca = 15, find: a2 + b2 + c2.
If 3x – 4y = 5 and xy = 3, find : 27x3 – 64y3.
If 3x + 2y = 9 and xy = 3, find : 27x3 + 8y3.
If 5x – 4y = 7 and xy = 8, find : 125x3 – 64y3.
The difference between the two numbers is 5 and their products are 14. Find the difference between their cubes.