Advertisements
Advertisements
प्रश्न
If a + b + c = 10 and a2 + b2 + c2 = 38, find : ab + bc + ca
उत्तर
a + b + c = 10
⇒ (a + b + c)2 = (10)2
⇒ a2 + b2 + c2 + 2ab + 2bc + 2ca = 100
⇒ 38 + 2(ab + bc + ca) = 100
⇒ 2(ab + bc + ca) = 100 − 38
⇒ 2(ab + bc + ca) = 62
⇒ (ab + bc+ ca) =`62/2`
⇒ ab + bc + ca = 31
Alternative Method :
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
⇒ (10)2 = 38 + 2(ab + bc + ca)
⇒ 100 = 38 + 2(ab + bc + ca)
⇒ 100 − 38 = 2(ab + bc + ca)
⇒ 62 = 2(ab + bc + ca)
⇒ `62/2` = ab + bc + ca
⇒ 31 = ab + bc + ca
∴ ab + bc + ca = 31
APPEARS IN
संबंधित प्रश्न
If a+b=5 and ab = 6, find a2 + b2
If a – b = 6 and ab = 16, find a2 + b2
If a2 + b2= 10 and ab = 3; find : a – b
If `"a"^2+ 1/"a"^2=23`, find : `"a" +1/"a"`
If `"a"^2+ 1/"a"^2=11`, find : `"a" -1/"a"`
Find: a2 + b2 + c2, if a + b + c = 9 and ab + bc + ca = 24
If a + b = 6 and ab=8, find : a3 + b3.
If a + b + c = 9 and ab + bc + ca = 15, find: a2 + b2 + c2.
If a + b = 8 and ab = 15, find : a3 + b3.
If 3x + 2y = 9 and xy = 3, find : 27x3 + 8y3.