Advertisements
Advertisements
प्रश्न
If a + b + c = 10 and a2 + b2 + c2 = 38, find : ab + bc + ca
उत्तर
a + b + c = 10
⇒ (a + b + c)2 = (10)2
⇒ a2 + b2 + c2 + 2ab + 2bc + 2ca = 100
⇒ 38 + 2(ab + bc + ca) = 100
⇒ 2(ab + bc + ca) = 100 − 38
⇒ 2(ab + bc + ca) = 62
⇒ (ab + bc+ ca) =`62/2`
⇒ ab + bc + ca = 31
Alternative Method :
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
⇒ (10)2 = 38 + 2(ab + bc + ca)
⇒ 100 = 38 + 2(ab + bc + ca)
⇒ 100 − 38 = 2(ab + bc + ca)
⇒ 62 = 2(ab + bc + ca)
⇒ `62/2` = ab + bc + ca
⇒ 31 = ab + bc + ca
∴ ab + bc + ca = 31
APPEARS IN
संबंधित प्रश्न
If a+b=5 and ab = 6, find a2 + b2
If a2 + b2 = 29 and ab = 10, find : a + b
If a2 + b2= 10 and ab = 3; find : a – b
If a2 + b2= 10 and ab = 3; find : a + b
If `"a"^2+ 1/"a"^2=11`, find : `"a" -1/"a"`
Find: a2 + b2 + c2, if a + b + c = 9 and ab + bc + ca = 24
If `3"x"+1/(3"x")=3`, find : `9"x"^2+1/(9"x"^2)`
If 3x – 4y = 5 and xy = 3, find : 27x3 – 64y3.
If 5x – 4y = 7 and xy = 8, find : 125x3 – 64y3.
The difference between the two numbers is 5 and their products are 14. Find the difference between their cubes.