Advertisements
Advertisements
Question
If a + b + c = 10 and a2 + b2 + c2 = 38, find : ab + bc + ca
Solution
a + b + c = 10
⇒ (a + b + c)2 = (10)2
⇒ a2 + b2 + c2 + 2ab + 2bc + 2ca = 100
⇒ 38 + 2(ab + bc + ca) = 100
⇒ 2(ab + bc + ca) = 100 − 38
⇒ 2(ab + bc + ca) = 62
⇒ (ab + bc+ ca) =`62/2`
⇒ ab + bc + ca = 31
Alternative Method :
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
⇒ (10)2 = 38 + 2(ab + bc + ca)
⇒ 100 = 38 + 2(ab + bc + ca)
⇒ 100 − 38 = 2(ab + bc + ca)
⇒ 62 = 2(ab + bc + ca)
⇒ `62/2` = ab + bc + ca
⇒ 31 = ab + bc + ca
∴ ab + bc + ca = 31
APPEARS IN
RELATED QUESTIONS
If a – b = 6 and ab = 16, find a2 + b2
If `"a" + 1/"a"=3`, find `"a"^2+1/"a"^2`
If `"a"^2+ 1/"a"^2=23`, find : `"a" +1/"a"`
If a – b = 3 and ab = 10, find : a3 – b3.
If `2"x"-1/(2"x")=4`, find : `4"x"^2+1/(4"x"^2)`
If `2"x"-1/(2"x")=4`, find : `8"x"^3-1/(8"x"^3)`
If `3"x"+1/(3"x")=3`, find : `27"x"^3+1/(27"x"^3)`
If a + b + c = 11 and a2 + b2 + c2 = 81, find : ab + bc + ca.
If 5x – 4y = 7 and xy = 8, find : 125x3 – 64y3.
The difference between the two numbers is 5 and their products are 14. Find the difference between their cubes.