Advertisements
Advertisements
Question
Find: a2 + b2 + c2, if a + b + c = 9 and ab + bc + ca = 24
Solution
a+ b + c = 9
⇒ (a + b + c)2 = (9)2
⇒ a2 + b2 + c2 + 2ab + 2bc + 2ca = 81
⇒ a2 + b2 + c2 + 2(ab + bc + ca) = 81
⇒ a2 + b2 + c2 + 2×24 = 81
⇒ a2 + b2 + c2 + 48 = 81
⇒ a2 + b2 + c2 = 81 − 48
⇒ a2 + b2 + c2 = 33
APPEARS IN
RELATED QUESTIONS
If a+b=5 and ab = 6, find a2 + b2
If a – b = 6 and ab = 16, find a2 + b2
If a2 + b2= 10 and ab = 3; find : a – b
If `"a" - 1/"a"=4`, find : `"a"^2+1/"a"^2`
If `"a"^2+ 1/"a"^2=23`, find : `"a" +1/"a"`
Find : `"a"^3+1/"a"^3`, if `"a" +1/"a"=5`.
If `2"x"-1/(2"x")=4`, find : `8"x"^3-1/(8"x"^3)`
If `3"x"+1/(3"x")=3`, find : `9"x"^2+1/(9"x"^2)`
If 5x – 4y = 7 and xy = 8, find : 125x3 – 64y3.
The difference between the two numbers is 5 and their products are 14. Find the difference between their cubes.