Advertisements
Advertisements
Question
If `"a" + 1/"a"=3`, find `"a"^2+1/"a"^2`
Solution
`("a"+1/"a")^2="a"^2+1/"a"^2+2`
`⇒(3)^2="a"^2+1/"a"^2+2`
`⇒9="a"^2+1/"a"^2+2`
`⇒9-2="a"^2+1/"a"^2`
`⇒7="a"^2+1/"a"^2`
`∴"a"^2+1/"a"^2=7`
Alternative Method :
`"a" +1/"a"=3`
`⇒("a"+1/"a")^2=(3)^2`
`⇒"a"^2+1/"a"^2+2=9`
`⇒"a"^2+1/"a"^2=9-2`
`⇒"a"^2+1/"a"^2=7`
APPEARS IN
RELATED QUESTIONS
If `"a" - 1/"a"=4`, find : `"a"^2+1/"a"^2`
If `"a"^2+ 1/"a"^2=11`, find : `"a" -1/"a"`
If a + b = 6 and ab=8, find : a3 + b3.
Find : `"a"^3+1/"a"^3`, if `"a" +1/"a"=5`.
Find : `"a"^3-1/"a"^3`, if `"a" -1/"a"=4`.
If `2"x"-1/(2"x")=4`, find : `4"x"^2+1/(4"x"^2)`
If a + b + c = 9 and ab + bc + ca = 15, find: a2 + b2 + c2.
If a + b = 8 and ab = 15, find : a3 + b3.
If 3x + 2y = 9 and xy = 3, find : 27x3 + 8y3.
The difference between the two numbers is 5 and their products are 14. Find the difference between their cubes.