Advertisements
Advertisements
Question
If a + b = 6 and ab=8, find : a3 + b3.
Solution
a + b = 6
⇒ (a + b)3 = (6)3
⇒ a3 + b3 + 3ab (a + b) = 216
⇒ a3 + b3 + 3×8 (6) = 216
⇒ a3 + b3 + 144 = 216
⇒ a3 + b3 = 216 − 144
⇒ a3 + b3 = 72
Alternative method :
(a + b)3 = a3 + b3 + 3ab (a + b)
⇒ (6)3 = a3 + b3 + 3×8 (6)
⇒ 216 = a3 + b3 + 144
⇒ 216 − 144 = a3 + b3
⇒ 72 = a3 + b3
⇒ a3 + b3 = 72
APPEARS IN
RELATED QUESTIONS
If a2 + b2 = 29 and ab = 10, find : a − b
If a2 + b2= 10 and ab = 3; find : a – b
If `"a" - 1/"a"=4`, find : `"a"^2+1/"a"^2`
If `"a"^2+ 1/"a"^2=11`, find : `"a" -1/"a"`
If a + b + c = 10 and a2 + b2 + c2 = 38, find : ab + bc + ca
Find: a2 + b2 + c2, if a + b + c = 9 and ab + bc + ca = 24
Find : `"a"^3-1/"a"^3`, if `"a" -1/"a"=4`.
If `3"x"+1/(3"x")=3`, find : `9"x"^2+1/(9"x"^2)`
The sum of the squares of two numbers is 13 and their product is 6. Find:
(i) the sum of the two numbers.
(ii) the difference between them.
The difference between the two numbers is 5 and their products are 14. Find the difference between their cubes.