Advertisements
Advertisements
Question
If a – b = 3 and ab = 10, find : a3 – b3.
Solution
a − b = 3
⇒ (a − b)3 = (3)3
⇒ a3 − b3 − 3ab (a − b) = 27
⇒ a3 − b3 − 3×10 (3) = 27
⇒ a3 − b3 − 90 = 27
⇒ a3 − b3 = 27 + 90
⇒ a3 − b3 = 117
Alternative Method :
(a − b)3 = a3 − b3 − 3ab (a − b)
⇒ (3)3 = a3 − b3 − 3×10 (3)
⇒ 27 = a3 − b3 − 90
⇒ 27 + 90 = a3 − b3
⇒ 117 = a3 − b3
⇒ a3 − b3 = 117
APPEARS IN
RELATED QUESTIONS
If a+b=5 and ab = 6, find a2 + b2
If a2 + b2 = 29 and ab = 10, find : a − b
If `"a"^2+ 1/"a"^2=11`, find : `"a" -1/"a"`
If a + b + c = 10 and a2 + b2 + c2 = 38, find : ab + bc + ca
If `3"x"+1/(3"x")=3`, find : `9"x"^2+1/(9"x"^2)`
If a + b + c = 9 and ab + bc + ca = 15, find: a2 + b2 + c2.
If 3x – 4y = 5 and xy = 3, find : 27x3 – 64y3.
If a + b = 8 and ab = 15, find : a3 + b3.
If 3x + 2y = 9 and xy = 3, find : 27x3 + 8y3.
The difference between the two numbers is 5 and their products are 14. Find the difference between their cubes.