Advertisements
Advertisements
प्रश्न
If A = `1/9[(-8, 1, 4),(4, 4, 7),(1, -8, 4)]`, prove that `"A"^-1 = "A"^"T"`
उत्तर
R.H.S : AT = `1/9[(-8, 4, 1),(1, 4, -8),(4, 7, 4)]` ........(1)
L.H.S : If A is martix of order n = 3
|A| = `(1/9)^3 [-8(16 + 56) - 1(16 - 7) + 4(- 32 - 4)]`
∵ |kA| = kn |A|
= `1/729 [-8(72) - 1(9) + 4(- 36)]`
= `/729 (- 576 - 9 - 144)`
= `1/729 (- 729)`
= – 1 ≠ 0
∴ A–1 exists.
adj A = `(1/9)^(3 - 1) [(+|(4, 7),(-8, 4)|, -|(4, 7),(1, 4)|, +|(4, 4),(1, -8)|),(-|(1, 4),(-8, 4)|, +|(-8, 4),(1, 4)|, -|(-8, 1),(1, -8)|),(+|(1, 4),(4, 7)|, -|(-8, 4),(4, 7)|, +|(-8, 1),(4, 4)|)]^"T"`
∵ `"adj" (lambda"A") = lambda^("n" - 1) ("adj A")`
= `1/81 [(+(16 + 56), -(16 - 7), +(-32 - 4)),(-(4 + 32), +(-32 - 4), -(64 - 1)),(+(7 - 16), -(-56 - 16),+(-32 - 4))]`
= `1/81 [(72, -9, -36),(-36, -36, -63),(-9, 72, -36)]^"T"`
adj A = `1/81 [(72, -36, -9),(-9, -36, 72),(-36, -63, -36)]`
= `1/81 xx 9[(8, 4, -1),(-1, -4, 8),(-4, -7, -4)]`
= `1/9 [(8, -4, -1),(-1, -4, 8),(-4, -7, -4)]`
A–1 = `1/|"A"|` adj A
= `1/(-1) * 1/9 [(8, -4, -1),(-1, -4, 8),(-4, -7, -4)]`
A–1 = `1/9 [(-8, 4, 1),(1, 4, -8),(4, 7, 4)]` ........(2)
(1), (2) ⇒ AT = A–1
APPEARS IN
संबंधित प्रश्न
Find the adjoint of the following:`1/3[(2, 2, 1),(-2, 1, 2),(1, -2, 2)]`
Find the inverse (if it exists) of the following:
`[(-2, 4),(1, -3)]`
If `"F"(alpha) = [(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`, show that `["F"(alpha)]^-1 = "F"(- alpha)`
If A = `[(8, -4),(-5, 3)]`, verify that A(adj A) = (adj A)A = |A|I2
If A = `[(3, 2),(7, 5)]` and B = `[(-1, -3),(5, 2)]`, verify that (AB)–1 = B–1 A–1
If adj(A) = `[(0, -2, 0),(6, 2, -6),(-3, 0, 6)]`, find A–1
Given A = `[(1, -1),(2, 0)]`, B = `[(3, -2),(1, 1)]` and C = `[(1, 1),(2, 2)]`, find a martix X such that AXB = C
Choose the correct alternative:
If |adj(adj A)| = |A|9, then the order of the square matrix A is
Choose the correct alternative:
If A is a 3 × 3 non-singular matrix such that AAT = AT A and B = A-1AT, then BBT =
Choose the correct alternative:
If A = `[(1, -2),(1, 4)] = [(6, 0),(0, 6)]`, then A =
Choose the correct alternative:
If A = `[(7, 3),(4, 2)]` then 9I2 – A =
Choose the correct alternative:
If A = `[(2, 0),(1, 5)]` and B = `[(1, 4),(2, 0)]` then |adj (AB)| =
Choose the correct alternative:
If + = `[(1, x, 0),(1, 3, 0),(2, 4, -2)]` is the adjoint of 3 × 3 matrix A and |A| = 4, then x is
Choose the correct alternative:
If ATA–1 is symmetric, then A2 =
Choose the correct alternative:
If A is a non-singular matrix such that A–1 = `[(5, 3),(-2, -1)]`, then (AT)–1 =
Choose the correct alternative:
Which of the following is/are correct?
(i) Adjoint of a symmetric matrix is also a symmetric matrix.
(ii) Adjoint of a diagonal matrix is also a diagonal matrix.
(iii) If A is a square matrix of order n and λ is a scalar, then adj(λA) = λn adj (A).
(iv) A(adj A) = (adj A)A = |A|I
Choose the correct alternative:
If A = `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]`, then adj(adj A) is