Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
If A = `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]`, then adj(adj A) is
पर्याय
`[(3, -3, 4),(2, -3, 4),(0, -1, 1)]`
`[(6, -6, 8),(4, -6, 8),(0, -2, 2)]`
`[(-3, 3, -4),(-2, 3, -4),(0, 1, -1)]`
`[(3, -3, 4),(0, -1, 1),(2, -3, 4)]`
उत्तर
`[(3, -3, 4),(2, -3, 4),(0, -1, 1)]`
APPEARS IN
संबंधित प्रश्न
Find the adjoint of the following:`1/3[(2, 2, 1),(-2, 1, 2),(1, -2, 2)]`
Find the inverse (if it exists) of the following:
`[(5, 1, 1),(1, 5, 1),(1, 1, 5)]`
If A = `[(5, 3),(-1, -2)]`, show that A2 – 3A – 7I2 = O2. Hence find A–1
If A = `1/9[(-8, 1, 4),(4, 4, 7),(1, -8, 4)]`, prove that `"A"^-1 = "A"^"T"`
If A = `[(8, -4),(-5, 3)]`, verify that A(adj A) = (adj A)A = |A|I2
If A = `[(3, 2),(7, 5)]` and B = `[(-1, -3),(5, 2)]`, verify that (AB)–1 = B–1 A–1
If adj(A) = `[(2, -4, 2),(-3, 12, -7),(-2, 0, 2)]`, find A
Find adj(adj(A)) if adj A = `[(1, 0, 1),(0, 2, 0),(-1, 0, 1)]`
A = `[(1, tanx),(-tanx, 1)]`, show that AT A–1 = `[(cos 2x, - sin 2x),(sin 2x, cos 2x)]`
Find the matrix A for which A`[(5, 3),(-1, -2)] = [(14, 7),(7, 7)]`
Choose the correct alternative:
If |adj(adj A)| = |A|9, then the order of the square matrix A is
Choose the correct alternative:
If A = `[(1, -2),(1, 4)] = [(6, 0),(0, 6)]`, then A =
Choose the correct alternative:
If A = `[(7, 3),(4, 2)]` then 9I2 – A =
Choose the correct alternative:
If + = `[(1, x, 0),(1, 3, 0),(2, 4, -2)]` is the adjoint of 3 × 3 matrix A and |A| = 4, then x is
Choose the correct alternative:
If A B, and C are invertible matrices of some order, then which one of the following is not true?
Choose the correct alternative:
If A is a non-singular matrix such that A–1 = `[(5, 3),(-2, -1)]`, then (AT)–1 =
Choose the correct alternative:
Which of the following is/are correct?
(i) Adjoint of a symmetric matrix is also a symmetric matrix.
(ii) Adjoint of a diagonal matrix is also a diagonal matrix.
(iii) If A is a square matrix of order n and λ is a scalar, then adj(λA) = λn adj (A).
(iv) A(adj A) = (adj A)A = |A|I