मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Find the matrix A for which A[53-1-2]=[14777] - Mathematics

Advertisements
Advertisements

प्रश्न

Find the matrix A for which A`[(5, 3),(-1, -2)] = [(14, 7),(7, 7)]`

बेरीज

उत्तर

Given A`[(5, 3),(-1, -2)] = [(14, 7),(7, 7)]`

Let B = `[(5, 3),(-1, -2)]`

C = `[(14, 7),(7, 7)]`

Given AB = C,

To find A:

Now AB = C

Post multiply by B–1 on both sides

ABB1 = CB1 

(i.e) A(BB1) = CB1

⇒ A(I) = CB1 

(i.e) A = CB1

To find B1:

B = `[(5, 3),(-1, -2)]`

|B| = `|(5, 3),(-1, -2)|`

= – 10 + 3

= – 7 ≠ 0

adj B = `[(-2, -3),(1, 5)]`

B= `1/|"B"|`

(adj B) = `1/(-7)[(-, -3),(1, 5)]`

= `1/7 [(2, 3),(-1, -5)]`

A = CB= `1/7 [(14, 7),(7, 7)] [(2, 3),(-1, -5)]` 

= `1/7 (7) [(2, 1),(1, 1)] (2, 3),(-1, -5)]`

= `[(2, 1),(1, 1)] [(2, 3),(-1, -5)]`

= `[(4 - 1, 6 - 5), (2 - 1, 3 - 5)]`

= `[(3, 1),(1, -2)]`

A =`[(3, 1),(1, -2)]`

shaalaa.com
Inverse of a Non-singular Square Matrix
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Applications of Matrices and Determinants - Exercise 1.1 [पृष्ठ १६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 1 Applications of Matrices and Determinants
Exercise 1.1 | Q 12 | पृष्ठ १६

संबंधित प्रश्‍न

Find the adjoint of the following:

`[(-3, 4),(6,2)]`


Find the adjoint of the following:

`[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`


Find the inverse (if it exists) of the following:

`[(5, 1, 1),(1, 5, 1),(1, 1, 5)]`


Find the inverse (if it exists) of the following:

`[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`


If `"F"(alpha) = [(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`, show that `["F"(alpha)]^-1 = "F"(- alpha)`


If A = `[(5, 3),(-1, -2)]`, show that A2 – 3A – 7I2 = O2. Hence find A–1 


If A = `[(8, -4),(-5, 3)]`, verify that A(adj A) = (adj A)A = |A|I2 


If adj(A) = `[(2, -4, 2),(-3, 12, -7),(-2, 0, 2)]`, find A


If adj(A) = `[(0, -2, 0),(6, 2, -6),(-3, 0, 6)]`, find A–1 


Find adj(adj(A)) if adj A = `[(1, 0, 1),(0, 2, 0),(-1, 0, 1)]`


A = `[(1, tanx),(-tanx, 1)]`, show that AT A–1 = `[(cos 2x,  - sin 2x),(sin 2x, cos 2x)]`


Choose the correct alternative:

If A is a 3 × 3 non-singular matrix such that AAT = AT A and B = A-1AT, then BBT =


Choose the correct alternative:

If A = `[(1, -2),(1, 4)] = [(6, 0),(0, 6)]`, then A =


Choose the correct alternative:

If A = `[(2, 0),(1, 5)]` and B = `[(1, 4),(2, 0)]` then |adj (AB)| =


Choose the correct alternative:

If + = `[(1, x, 0),(1, 3, 0),(2, 4, -2)]` is the adjoint of 3 × 3 matrix A and |A| = 4, then x is


Choose the correct alternative:

If A B, and C are invertible matrices of some order, then which one of the following is not true?


Choose the correct alternative:

If A is a non-singular matrix such that A–1 = `[(5, 3),(-2, -1)]`, then (AT)1 =


Choose the correct alternative:

Which of the following is/are correct?
(i) Adjoint of a symmetric matrix is also a symmetric matrix.
(ii) Adjoint of a diagonal matrix is also a diagonal matrix.
(iii) If A is a square matrix of order n and λ is a scalar, then adj(λA) = λn adj (A).
(iv) A(adj A) = (adj A)A = |A|I


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×