मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Find the adjoint of the following: [231341372] - Mathematics

Advertisements
Advertisements

प्रश्न

Find the adjoint of the following:

`[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`

बेरीज

उत्तर

A = `[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`

adj A = `[(+|(4, 1),(7, 2)|, -|(3, 1),(3, 2)| + |(3, 4),(3, 7)|),(-|(3, 1),(7, 2)|, +|(2, 1),(3, 2)| - |(2, 3),(3, 7)|),(+|(3, 1),(4, 1)|, -|(2, 1),(3, 1)| + |(2, 3),(3, 4)|)]^"T"`

= `[(+(8 - 7), -(6 - 3), +(21 - 12)),(-(6 - 7), + (4 - 3), -(14 - 9)),(+(3 - 4), -(2 - 3), +(8 - 9))]^"T"`

= `[(1, -3, 9),(1, 1, -5),(-1, 1, -1)]^"T"`

adj A = `[(1, 1, -1),(-3, 1, 1),(9, -5, -1)]`

shaalaa.com
Inverse of a Non-singular Square Matrix
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Applications of Matrices and Determinants - Exercise 1.1 [पृष्ठ १५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 1 Applications of Matrices and Determinants
Exercise 1.1 | Q 1. (ii) | पृष्ठ १५

संबंधित प्रश्‍न

If A = `[(8, -4),(-5, 3)]`, verify that A(adj A) = (adj A)A = |A|I2 


If A = `[(3, 2),(7, 5)]` and B = `[(-1, -3),(5, 2)]`, verify that (AB)–1 = B1 A1 


If adj(A) = `[(2, -4, 2),(-3, 12, -7),(-2, 0, 2)]`, find A


If adj(A) = `[(0, -2, 0),(6, 2, -6),(-3, 0, 6)]`, find A–1 


Find adj(adj(A)) if adj A = `[(1, 0, 1),(0, 2, 0),(-1, 0, 1)]`


Given A = `[(1, -1),(2, 0)]`, B = `[(3, -2),(1, 1)]` and C = `[(1, 1),(2, 2)]`, find a martix X such that AXB = C


If A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]`, show that `"A"^-1 = 1/2("A"^2 - 3"I")`


Choose the correct alternative:

If A is a 3 × 3 non-singular matrix such that AAT = AT A and B = A-1AT, then BBT =


Choose the correct alternative:

If A = `[(1, -2),(1, 4)] = [(6, 0),(0, 6)]`, then A =


Choose the correct alternative:

If A = `[(7, 3),(4, 2)]` then 9I2 – A =


Choose the correct alternative:

If A = `[(2, 0),(1, 5)]` and B = `[(1, 4),(2, 0)]` then |adj (AB)| =


Choose the correct alternative:

If + = `[(1, x, 0),(1, 3, 0),(2, 4, -2)]` is the adjoint of 3 × 3 matrix A and |A| = 4, then x is


Choose the correct alternative:

If ATA1 is symmetric, then A2 =


Choose the correct alternative:

If A is a non-singular matrix such that A–1 = `[(5, 3),(-2, -1)]`, then (AT)1 =


Choose the correct alternative:

Which of the following is/are correct?
(i) Adjoint of a symmetric matrix is also a symmetric matrix.
(ii) Adjoint of a diagonal matrix is also a diagonal matrix.
(iii) If A is a square matrix of order n and λ is a scalar, then adj(λA) = λn adj (A).
(iv) A(adj A) = (adj A)A = |A|I


Choose the correct alternative:

If A = `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]`, then adj(adj A) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×