Advertisements
Advertisements
प्रश्न
A = `[(1, tanx),(-tanx, 1)]`, show that AT A–1 = `[(cos 2x, - sin 2x),(sin 2x, cos 2x)]`
उत्तर
A = `[(1, tanx),(-tanx, 1)]`
|A| = 1 + tan2x
= sec2x ≠ 0.A–1 exists.
adj A = `[(1, - tanx),(tanx, 1)]`
A–1 = `1/|"A"|` adj A
= `1/(sec^2x) [(1, - tanx),(tanx, 1)]`
AT = `[(1, - tanx),(tanx, 1)]`
AT A–1 = `1/(sec^2x) [(1, - tanx),(tanx, 1)][(1, -tanx),(tanx, 1)]`
= `1/(sec^2x) [(1 - tan^2x, - tanx - tanx),(tanx + tanx, - tan^2x + 1)]`
= `1/(sec^2x) [(1 - tan^2x, -2tanx), (2tanx, 1 - tan^2x)]`
= `cos^2x [(1 - (sin^2)/(cos^2), -2sinx/cosx),(2 sinx/cosx, 1 - (sin^2x)/(cos^2x))]`
= `[(cos^2x - sin^2x, -2 sinx cosx),(2sinx cosx, cos^2x - sin^2x)]`
∵ cos 2A = cos2A – sin2A
sin 2A = 2 sin A cos A
AT A–1 = `[(cos2x, - sin2x),(sin2x, cos2x)]`
Hence proved
APPEARS IN
संबंधित प्रश्न
Find the adjoint of the following:
`[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`
Find the adjoint of the following:`1/3[(2, 2, 1),(-2, 1, 2),(1, -2, 2)]`
If A = `[(5, 3),(-1, -2)]`, show that A2 – 3A – 7I2 = O2. Hence find A–1
If A = `1/9[(-8, 1, 4),(4, 4, 7),(1, -8, 4)]`, prove that `"A"^-1 = "A"^"T"`
If A = `[(8, -4),(-5, 3)]`, verify that A(adj A) = (adj A)A = |A|I2
If A = `[(3, 2),(7, 5)]` and B = `[(-1, -3),(5, 2)]`, verify that (AB)–1 = B–1 A–1
If adj(A) = `[(2, -4, 2),(-3, 12, -7),(-2, 0, 2)]`, find A
If adj(A) = `[(0, -2, 0),(6, 2, -6),(-3, 0, 6)]`, find A–1
Find adj(adj(A)) if adj A = `[(1, 0, 1),(0, 2, 0),(-1, 0, 1)]`
Decrypt the received encoded message [2 – 3][20 – 4] with the encryption matrix `[(-1, -1),(2, 1)]` and the decryption matrix as its inverse, where the system of codes are described by the numbers 1 – 26 to the letters A – Z respectively, and the number 0 to a blank space
Choose the correct alternative:
If A is a 3 × 3 non-singular matrix such that AAT = AT A and B = A-1AT, then BBT =
Choose the correct alternative:
If A = `[(1, -2),(1, 4)] = [(6, 0),(0, 6)]`, then A =
Choose the correct alternative:
If A B, and C are invertible matrices of some order, then which one of the following is not true?
Choose the correct alternative:
If A = `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]`, then adj(adj A) is