Advertisements
Advertisements
प्रश्न
A = `[(1, tanx),(-tanx, 1)]`, show that AT A–1 = `[(cos 2x, - sin 2x),(sin 2x, cos 2x)]`
उत्तर
A = `[(1, tanx),(-tanx, 1)]`
|A| = 1 + tan2x
= sec2x ≠ 0.A–1 exists.
adj A = `[(1, - tanx),(tanx, 1)]`
A–1 = `1/|"A"|` adj A
= `1/(sec^2x) [(1, - tanx),(tanx, 1)]`
AT = `[(1, - tanx),(tanx, 1)]`
AT A–1 = `1/(sec^2x) [(1, - tanx),(tanx, 1)][(1, -tanx),(tanx, 1)]`
= `1/(sec^2x) [(1 - tan^2x, - tanx - tanx),(tanx + tanx, - tan^2x + 1)]`
= `1/(sec^2x) [(1 - tan^2x, -2tanx), (2tanx, 1 - tan^2x)]`
= `cos^2x [(1 - (sin^2)/(cos^2), -2sinx/cosx),(2 sinx/cosx, 1 - (sin^2x)/(cos^2x))]`
= `[(cos^2x - sin^2x, -2 sinx cosx),(2sinx cosx, cos^2x - sin^2x)]`
∵ cos 2A = cos2A – sin2A
sin 2A = 2 sin A cos A
AT A–1 = `[(cos2x, - sin2x),(sin2x, cos2x)]`
Hence proved
APPEARS IN
संबंधित प्रश्न
Find the adjoint of the following:
`[(-3, 4),(6,2)]`
Find the inverse (if it exists) of the following:
`[(-2, 4),(1, -3)]`
Find the inverse (if it exists) of the following:
`[(5, 1, 1),(1, 5, 1),(1, 1, 5)]`
If A = `[(5, 3),(-1, -2)]`, show that A2 – 3A – 7I2 = O2. Hence find A–1
If A = `[(8, -4),(-5, 3)]`, verify that A(adj A) = (adj A)A = |A|I2
If A = `[(3, 2),(7, 5)]` and B = `[(-1, -3),(5, 2)]`, verify that (AB)–1 = B–1 A–1
If adj(A) = `[(2, -4, 2),(-3, 12, -7),(-2, 0, 2)]`, find A
Find adj(adj(A)) if adj A = `[(1, 0, 1),(0, 2, 0),(-1, 0, 1)]`
Given A = `[(1, -1),(2, 0)]`, B = `[(3, -2),(1, 1)]` and C = `[(1, 1),(2, 2)]`, find a martix X such that AXB = C
If A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]`, show that `"A"^-1 = 1/2("A"^2 - 3"I")`
Choose the correct alternative:
If A = `[(2, 0),(1, 5)]` and B = `[(1, 4),(2, 0)]` then |adj (AB)| =
Choose the correct alternative:
If A B, and C are invertible matrices of some order, then which one of the following is not true?
Choose the correct alternative:
If ATA–1 is symmetric, then A2 =
Choose the correct alternative:
If A is a non-singular matrix such that A–1 = `[(5, 3),(-2, -1)]`, then (AT)–1 =
Choose the correct alternative:
Which of the following is/are correct?
(i) Adjoint of a symmetric matrix is also a symmetric matrix.
(ii) Adjoint of a diagonal matrix is also a diagonal matrix.
(iii) If A is a square matrix of order n and λ is a scalar, then adj(λA) = λn adj (A).
(iv) A(adj A) = (adj A)A = |A|I