हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

A = [1tanx-tanx1], show that AT A–1 = [cos2x -sin2xsin2xcos2x] - Mathematics

Advertisements
Advertisements

प्रश्न

A = `[(1, tanx),(-tanx, 1)]`, show that AT A–1 = `[(cos 2x,  - sin 2x),(sin 2x, cos 2x)]`

योग

उत्तर

A = `[(1, tanx),(-tanx, 1)]`

|A| = 1 + tan2x

= sec2x ≠ 0.A–1 exists.

adj A = `[(1, - tanx),(tanx, 1)]`

A–1 = `1/|"A"|` adj A

= `1/(sec^2x) [(1, - tanx),(tanx, 1)]`

AT = `[(1, - tanx),(tanx, 1)]`

AT A–1 = `1/(sec^2x) [(1, - tanx),(tanx, 1)][(1, -tanx),(tanx, 1)]`

= `1/(sec^2x) [(1 - tan^2x, - tanx - tanx),(tanx + tanx, - tan^2x + 1)]`

= `1/(sec^2x) [(1 - tan^2x, -2tanx), (2tanx, 1 - tan^2x)]`

= `cos^2x [(1 - (sin^2)/(cos^2), -2sinx/cosx),(2 sinx/cosx, 1 - (sin^2x)/(cos^2x))]`

= `[(cos^2x - sin^2x, -2 sinx cosx),(2sinx cosx, cos^2x - sin^2x)]`

∵ cos 2A = cos2A – sin2A

sin 2A = 2 sin A cos A

AT A–1 = `[(cos2x, - sin2x),(sin2x, cos2x)]`

Hence proved

shaalaa.com
Inverse of a Non-singular Square Matrix
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Applications of Matrices and Determinants - Exercise 1.1 [पृष्ठ १६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 1 Applications of Matrices and Determinants
Exercise 1.1 | Q 11 | पृष्ठ १६

संबंधित प्रश्न

Find the adjoint of the following:

`[(-3, 4),(6,2)]`


Find the inverse (if it exists) of the following:

`[(-2, 4),(1, -3)]`


Find the inverse (if it exists) of the following:

`[(5, 1, 1),(1, 5, 1),(1, 1, 5)]`


If A = `[(5, 3),(-1, -2)]`, show that A2 – 3A – 7I2 = O2. Hence find A–1 


If A = `[(8, -4),(-5, 3)]`, verify that A(adj A) = (adj A)A = |A|I2 


If A = `[(3, 2),(7, 5)]` and B = `[(-1, -3),(5, 2)]`, verify that (AB)–1 = B1 A1 


If adj(A) = `[(2, -4, 2),(-3, 12, -7),(-2, 0, 2)]`, find A


Find adj(adj(A)) if adj A = `[(1, 0, 1),(0, 2, 0),(-1, 0, 1)]`


Given A = `[(1, -1),(2, 0)]`, B = `[(3, -2),(1, 1)]` and C = `[(1, 1),(2, 2)]`, find a martix X such that AXB = C


If A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]`, show that `"A"^-1 = 1/2("A"^2 - 3"I")`


Choose the correct alternative:

If A = `[(2, 0),(1, 5)]` and B = `[(1, 4),(2, 0)]` then |adj (AB)| =


Choose the correct alternative:

If A B, and C are invertible matrices of some order, then which one of the following is not true?


Choose the correct alternative:

If ATA1 is symmetric, then A2 =


Choose the correct alternative:

If A is a non-singular matrix such that A–1 = `[(5, 3),(-2, -1)]`, then (AT)1 =


Choose the correct alternative:

Which of the following is/are correct?
(i) Adjoint of a symmetric matrix is also a symmetric matrix.
(ii) Adjoint of a diagonal matrix is also a diagonal matrix.
(iii) If A is a square matrix of order n and λ is a scalar, then adj(λA) = λn adj (A).
(iv) A(adj A) = (adj A)A = |A|I


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×