हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

If adj(A) = [2-42-312-7-202], find A - Mathematics

Advertisements
Advertisements

प्रश्न

If adj(A) = `[(2, -4, 2),(-3, 12, -7),(-2, 0, 2)]`, find A

योग

उत्तर

adj(A) = `[(2, -4, 2),(-3, 12, -7),(-2, 0, 2)]`

A = `+- 1/sqrt(+"adj A"|)` adj (adj A)

|adj (A)| = 2(24 – 0) + 4(– 6 – 14) + 2(0 + 24)

= 48 – 80 + 48

= 16

adj (adj A) = `[(+|(12, - 7),(0, 2)|, -|(-3, - 7),(-2, 2)|, +|(-3, 12),(-2, 0)|),(-|(-4, 2),(0, 2)|, +|(2, 2),(-2, 2)|, -|(2, -4),(-2, 0)|),(+|(-4, 2),(12, -7)|, -|(2, 2),(-3, -7)|, +|(2, -4),(-3, 12)|)]^"T"`

= `[(+(24 - 0), -(-6 - 14), +(0 + 24)), (-(- 8 - 0), +(4 + 4), -(0 - 8)),(+(28 - 24), -(- 14 + 6), +(24 - 12))]^"T"`

= `[(24, 20, 24),(8, 8, 8),(4, 8, 12)]^"T"`

adj (adj A) = `[(24, 8, 4),(20, 8, 8),(4, 8, 12)]`

= `4[(6, 2, 1),(5, 2, 2),(6, 2, 3)]`

`sqrt(|"adj A"|) = sqrt(16)` = 4

A = `+- (1/4) 4[(6, 2, 1),(5, 2, 2),(6, 2, 3)]`

= `+- [(6, 2, 1),(5, 2, 2),(6, 2, 3)]`

shaalaa.com
Inverse of a Non-singular Square Matrix
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Applications of Matrices and Determinants - Exercise 1.1 [पृष्ठ १६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 1 Applications of Matrices and Determinants
Exercise 1.1 | Q 8 | पृष्ठ १६

संबंधित प्रश्न

Find the adjoint of the following:

`[(-3, 4),(6,2)]`


Find the adjoint of the following:

`[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`


Find the inverse (if it exists) of the following:

`[(-2, 4),(1, -3)]`


Find the inverse (if it exists) of the following:

`[(5, 1, 1),(1, 5, 1),(1, 1, 5)]`


Find the inverse (if it exists) of the following:

`[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`


If `"F"(alpha) = [(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`, show that `["F"(alpha)]^-1 = "F"(- alpha)`


If A = `[(5, 3),(-1, -2)]`, show that A2 – 3A – 7I2 = O2. Hence find A–1 


If adj(A) = `[(0, -2, 0),(6, 2, -6),(-3, 0, 6)]`, find A–1 


Find adj(adj(A)) if adj A = `[(1, 0, 1),(0, 2, 0),(-1, 0, 1)]`


A = `[(1, tanx),(-tanx, 1)]`, show that AT A–1 = `[(cos 2x,  - sin 2x),(sin 2x, cos 2x)]`


Given A = `[(1, -1),(2, 0)]`, B = `[(3, -2),(1, 1)]` and C = `[(1, 1),(2, 2)]`, find a martix X such that AXB = C


Choose the correct alternative:

If |adj(adj A)| = |A|9, then the order of the square matrix A is


Choose the correct alternative:

If A is a 3 × 3 non-singular matrix such that AAT = AT A and B = A-1AT, then BBT =


Choose the correct alternative:

If A = `[(1, -2),(1, 4)] = [(6, 0),(0, 6)]`, then A =


Choose the correct alternative:

If + = `[(1, x, 0),(1, 3, 0),(2, 4, -2)]` is the adjoint of 3 × 3 matrix A and |A| = 4, then x is


Choose the correct alternative:

If ATA1 is symmetric, then A2 =


Choose the correct alternative:

If A is a non-singular matrix such that A–1 = `[(5, 3),(-2, -1)]`, then (AT)1 =


Choose the correct alternative:

If A = `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]`, then adj(adj A) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×