Advertisements
Advertisements
प्रश्न
If adj(A) = `[(2, -4, 2),(-3, 12, -7),(-2, 0, 2)]`, find A
उत्तर
adj(A) = `[(2, -4, 2),(-3, 12, -7),(-2, 0, 2)]`
A = `+- 1/sqrt(+"adj A"|)` adj (adj A)
|adj (A)| = 2(24 – 0) + 4(– 6 – 14) + 2(0 + 24)
= 48 – 80 + 48
= 16
adj (adj A) = `[(+|(12, - 7),(0, 2)|, -|(-3, - 7),(-2, 2)|, +|(-3, 12),(-2, 0)|),(-|(-4, 2),(0, 2)|, +|(2, 2),(-2, 2)|, -|(2, -4),(-2, 0)|),(+|(-4, 2),(12, -7)|, -|(2, 2),(-3, -7)|, +|(2, -4),(-3, 12)|)]^"T"`
= `[(+(24 - 0), -(-6 - 14), +(0 + 24)), (-(- 8 - 0), +(4 + 4), -(0 - 8)),(+(28 - 24), -(- 14 + 6), +(24 - 12))]^"T"`
= `[(24, 20, 24),(8, 8, 8),(4, 8, 12)]^"T"`
adj (adj A) = `[(24, 8, 4),(20, 8, 8),(4, 8, 12)]`
= `4[(6, 2, 1),(5, 2, 2),(6, 2, 3)]`
`sqrt(|"adj A"|) = sqrt(16)` = 4
A = `+- (1/4) 4[(6, 2, 1),(5, 2, 2),(6, 2, 3)]`
= `+- [(6, 2, 1),(5, 2, 2),(6, 2, 3)]`
APPEARS IN
संबंधित प्रश्न
Find the adjoint of the following:
`[(-3, 4),(6,2)]`
Find the adjoint of the following:
`[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`
Find the inverse (if it exists) of the following:
`[(-2, 4),(1, -3)]`
Find the inverse (if it exists) of the following:
`[(5, 1, 1),(1, 5, 1),(1, 1, 5)]`
Find the inverse (if it exists) of the following:
`[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`
If `"F"(alpha) = [(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`, show that `["F"(alpha)]^-1 = "F"(- alpha)`
If A = `[(5, 3),(-1, -2)]`, show that A2 – 3A – 7I2 = O2. Hence find A–1
If adj(A) = `[(0, -2, 0),(6, 2, -6),(-3, 0, 6)]`, find A–1
Find adj(adj(A)) if adj A = `[(1, 0, 1),(0, 2, 0),(-1, 0, 1)]`
A = `[(1, tanx),(-tanx, 1)]`, show that AT A–1 = `[(cos 2x, - sin 2x),(sin 2x, cos 2x)]`
Given A = `[(1, -1),(2, 0)]`, B = `[(3, -2),(1, 1)]` and C = `[(1, 1),(2, 2)]`, find a martix X such that AXB = C
Choose the correct alternative:
If |adj(adj A)| = |A|9, then the order of the square matrix A is
Choose the correct alternative:
If A is a 3 × 3 non-singular matrix such that AAT = AT A and B = A-1AT, then BBT =
Choose the correct alternative:
If A = `[(1, -2),(1, 4)] = [(6, 0),(0, 6)]`, then A =
Choose the correct alternative:
If + = `[(1, x, 0),(1, 3, 0),(2, 4, -2)]` is the adjoint of 3 × 3 matrix A and |A| = 4, then x is
Choose the correct alternative:
If ATA–1 is symmetric, then A2 =
Choose the correct alternative:
If A is a non-singular matrix such that A–1 = `[(5, 3),(-2, -1)]`, then (AT)–1 =
Choose the correct alternative:
If A = `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]`, then adj(adj A) is