Advertisements
Advertisements
Question
If adj(A) = `[(2, -4, 2),(-3, 12, -7),(-2, 0, 2)]`, find A
Solution
adj(A) = `[(2, -4, 2),(-3, 12, -7),(-2, 0, 2)]`
A = `+- 1/sqrt(+"adj A"|)` adj (adj A)
|adj (A)| = 2(24 – 0) + 4(– 6 – 14) + 2(0 + 24)
= 48 – 80 + 48
= 16
adj (adj A) = `[(+|(12, - 7),(0, 2)|, -|(-3, - 7),(-2, 2)|, +|(-3, 12),(-2, 0)|),(-|(-4, 2),(0, 2)|, +|(2, 2),(-2, 2)|, -|(2, -4),(-2, 0)|),(+|(-4, 2),(12, -7)|, -|(2, 2),(-3, -7)|, +|(2, -4),(-3, 12)|)]^"T"`
= `[(+(24 - 0), -(-6 - 14), +(0 + 24)), (-(- 8 - 0), +(4 + 4), -(0 - 8)),(+(28 - 24), -(- 14 + 6), +(24 - 12))]^"T"`
= `[(24, 20, 24),(8, 8, 8),(4, 8, 12)]^"T"`
adj (adj A) = `[(24, 8, 4),(20, 8, 8),(4, 8, 12)]`
= `4[(6, 2, 1),(5, 2, 2),(6, 2, 3)]`
`sqrt(|"adj A"|) = sqrt(16)` = 4
A = `+- (1/4) 4[(6, 2, 1),(5, 2, 2),(6, 2, 3)]`
= `+- [(6, 2, 1),(5, 2, 2),(6, 2, 3)]`
APPEARS IN
RELATED QUESTIONS
Find the adjoint of the following:
`[(-3, 4),(6,2)]`
Find the adjoint of the following:
`[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`
Find the adjoint of the following:`1/3[(2, 2, 1),(-2, 1, 2),(1, -2, 2)]`
Find the inverse (if it exists) of the following:
`[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`
If A = `[(5, 3),(-1, -2)]`, show that A2 – 3A – 7I2 = O2. Hence find A–1
If A = `[(8, -4),(-5, 3)]`, verify that A(adj A) = (adj A)A = |A|I2
Find adj(adj(A)) if adj A = `[(1, 0, 1),(0, 2, 0),(-1, 0, 1)]`
A = `[(1, tanx),(-tanx, 1)]`, show that AT A–1 = `[(cos 2x, - sin 2x),(sin 2x, cos 2x)]`
Given A = `[(1, -1),(2, 0)]`, B = `[(3, -2),(1, 1)]` and C = `[(1, 1),(2, 2)]`, find a martix X such that AXB = C
If A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]`, show that `"A"^-1 = 1/2("A"^2 - 3"I")`
Choose the correct alternative:
If |adj(adj A)| = |A|9, then the order of the square matrix A is
Choose the correct alternative:
If A is a 3 × 3 non-singular matrix such that AAT = AT A and B = A-1AT, then BBT =
Choose the correct alternative:
If A = `[(7, 3),(4, 2)]` then 9I2 – A =
Choose the correct alternative:
If A = `[(2, 0),(1, 5)]` and B = `[(1, 4),(2, 0)]` then |adj (AB)| =
Choose the correct alternative:
If A B, and C are invertible matrices of some order, then which one of the following is not true?