Advertisements
Advertisements
Question
If A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]`, show that `"A"^-1 = 1/2("A"^2 - 3"I")`
Solution
A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]`
A2 = A × A
= `[(0, 1, 1),(1, 0, 1),(1, 1, 0)] [(0, 1, 1),(1, 0, 1),(1, 1, 0)]`
= `[(0 + 1 + 1, 0 + 0 + 1, 0 + 1 + 0),(0 + 0 + 1, 1 + 0 + 1, 1 + 0 + 0),(0 + 1 + 0, 1 + 0 + 0, 1 + 1 + 0)]`
= `[(2, 1, 1),(1, 2, 1),(1, 1, 2)]`
A2 – 3I = `[(2, 1, 1),(1, 2, 1),(1, 1, 2)] - 3[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
= `[(2, 1, 1),(1, 2, 1),(1, 1, 2)] + [(-3, 0, 0),(0, -3, 0),(0, 0, -3)]`
A2 – 3I = `[(-1, 1, 1),(1, -1, 1),(1, 1, -1)]` .........(1)
adj A = `[(+|(0, 1),(1, 0)|, -|(1, 1),(1, 0)|, +|(1, 0),(1, 1)|),(-|(1, 1),(1, 0)|, +|(0, 1),(1, 0)|, -|(0, 1),(1, 1)|),(+|(1, 1),(0, 1)|, -|(0, 1),(1, 1)|, +|(0, 1),(1, 0)|)]^"T"`
= `[(+(0 - 1) , -(0 - 1), +(1 - 0)),(-(0 - 1), +(0 - 1), -(0 - 1)),(+(1 - 0), -(0 - 1), +(0 - 1))]^"T"`
= `[(-1, 1, 1),(1, -1, 1),(1, 1, -1)]^"T"`
adj A = `[(-1, 1, 1),(1, -1, 1),(1, 1, -1)]`
A–1 = `1/|"A"|` adj A = `1/2 [(-1, 1, 1),(1, -1, 1),(1, 1, -1)]`
A–1 = `1/2 ("A"^2 - 3"I")` ......(Using (1))
Hence proved
APPEARS IN
RELATED QUESTIONS
Find the adjoint of the following:
`[(-3, 4),(6,2)]`
Find the adjoint of the following:`1/3[(2, 2, 1),(-2, 1, 2),(1, -2, 2)]`
Find the inverse (if it exists) of the following:
`[(-2, 4),(1, -3)]`
Find the inverse (if it exists) of the following:
`[(5, 1, 1),(1, 5, 1),(1, 1, 5)]`
Find the inverse (if it exists) of the following:
`[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`
If A = `[(5, 3),(-1, -2)]`, show that A2 – 3A – 7I2 = O2. Hence find A–1
If A = `1/9[(-8, 1, 4),(4, 4, 7),(1, -8, 4)]`, prove that `"A"^-1 = "A"^"T"`
If A = `[(8, -4),(-5, 3)]`, verify that A(adj A) = (adj A)A = |A|I2
If A = `[(3, 2),(7, 5)]` and B = `[(-1, -3),(5, 2)]`, verify that (AB)–1 = B–1 A–1
If adj(A) = `[(2, -4, 2),(-3, 12, -7),(-2, 0, 2)]`, find A
A = `[(1, tanx),(-tanx, 1)]`, show that AT A–1 = `[(cos 2x, - sin 2x),(sin 2x, cos 2x)]`
Choose the correct alternative:
If A is a 3 × 3 non-singular matrix such that AAT = AT A and B = A-1AT, then BBT =
Choose the correct alternative:
If A = `[(7, 3),(4, 2)]` then 9I2 – A =
Choose the correct alternative:
If A B, and C are invertible matrices of some order, then which one of the following is not true?
Choose the correct alternative:
If ATA–1 is symmetric, then A2 =
Choose the correct alternative:
Which of the following is/are correct?
(i) Adjoint of a symmetric matrix is also a symmetric matrix.
(ii) Adjoint of a diagonal matrix is also a diagonal matrix.
(iii) If A is a square matrix of order n and λ is a scalar, then adj(λA) = λn adj (A).
(iv) A(adj A) = (adj A)A = |A|I
Choose the correct alternative:
If A = `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]`, then adj(adj A) is