हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

If A = [011101110], show that AAIA-1=12(A2-3I) - Mathematics

Advertisements
Advertisements

प्रश्न

If A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]`, show that `"A"^-1 = 1/2("A"^2 - 3"I")`

योग

उत्तर

A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]`

A2 = A × A

= `[(0, 1, 1),(1, 0, 1),(1, 1, 0)] [(0, 1, 1),(1, 0, 1),(1, 1, 0)]`

= `[(0 + 1 + 1, 0 + 0 + 1, 0 + 1 + 0),(0 + 0 + 1, 1 + 0 + 1, 1 + 0 + 0),(0 + 1 + 0, 1 + 0 + 0, 1 + 1 + 0)]`

= `[(2, 1, 1),(1, 2, 1),(1, 1, 2)]`

A2 – 3I = `[(2, 1, 1),(1, 2, 1),(1, 1, 2)] - 3[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

= `[(2, 1, 1),(1, 2, 1),(1, 1, 2)] + [(-3, 0, 0),(0, -3, 0),(0, 0, -3)]`

A2 – 3I = `[(-1, 1, 1),(1, -1, 1),(1, 1, -1)]`  .........(1)

adj A = `[(+|(0, 1),(1, 0)|, -|(1, 1),(1, 0)|, +|(1, 0),(1, 1)|),(-|(1, 1),(1, 0)|, +|(0, 1),(1, 0)|, -|(0, 1),(1, 1)|),(+|(1, 1),(0, 1)|, -|(0, 1),(1, 1)|, +|(0, 1),(1, 0)|)]^"T"`

= `[(+(0 - 1) , -(0 - 1), +(1 - 0)),(-(0 - 1), +(0 - 1), -(0 - 1)),(+(1 - 0), -(0 - 1), +(0 - 1))]^"T"`

= `[(-1, 1, 1),(1, -1, 1),(1, 1, -1)]^"T"`

adj A = `[(-1, 1, 1),(1, -1, 1),(1, 1, -1)]`

A–1 = `1/|"A"|` adj A = `1/2 [(-1, 1, 1),(1, -1, 1),(1, 1, -1)]`

A–1 = `1/2 ("A"^2 - 3"I")`  ......(Using (1))

Hence proved

shaalaa.com
Inverse of a Non-singular Square Matrix
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Applications of Matrices and Determinants - Exercise 1.1 [पृष्ठ १६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 1 Applications of Matrices and Determinants
Exercise 1.1 | Q 14 | पृष्ठ १६

संबंधित प्रश्न

Find the adjoint of the following:

`[(-3, 4),(6,2)]`


Find the adjoint of the following:

`[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`


Find the adjoint of the following:`1/3[(2, 2, 1),(-2, 1, 2),(1, -2, 2)]`


If `"F"(alpha) = [(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`, show that `["F"(alpha)]^-1 = "F"(- alpha)`


If A = `[(5, 3),(-1, -2)]`, show that A2 – 3A – 7I2 = O2. Hence find A–1 


If A = `[(3, 2),(7, 5)]` and B = `[(-1, -3),(5, 2)]`, verify that (AB)–1 = B1 A1 


If adj(A) = `[(0, -2, 0),(6, 2, -6),(-3, 0, 6)]`, find A–1 


Find the matrix A for which A`[(5, 3),(-1, -2)] = [(14, 7),(7, 7)]`


Decrypt the received encoded message [2 – 3][20 – 4] with the encryption matrix `[(-1, -1),(2, 1)]` and the decryption matrix as its inverse, where the system of codes are described by the numbers 1 – 26 to the letters A – Z respectively, and the number 0 to a blank space


Choose the correct alternative:

If |adj(adj A)| = |A|9, then the order of the square matrix A is


Choose the correct alternative:

If A = `[(1, -2),(1, 4)] = [(6, 0),(0, 6)]`, then A =


Choose the correct alternative:

If A B, and C are invertible matrices of some order, then which one of the following is not true?


Choose the correct alternative:

If A is a non-singular matrix such that A–1 = `[(5, 3),(-2, -1)]`, then (AT)1 =


Choose the correct alternative:

Which of the following is/are correct?
(i) Adjoint of a symmetric matrix is also a symmetric matrix.
(ii) Adjoint of a diagonal matrix is also a diagonal matrix.
(iii) If A is a square matrix of order n and λ is a scalar, then adj(λA) = λn adj (A).
(iv) A(adj A) = (adj A)A = |A|I


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×