Advertisements
Advertisements
प्रश्न
If A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]`, show that `"A"^-1 = 1/2("A"^2 - 3"I")`
उत्तर
A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]`
A2 = A × A
= `[(0, 1, 1),(1, 0, 1),(1, 1, 0)] [(0, 1, 1),(1, 0, 1),(1, 1, 0)]`
= `[(0 + 1 + 1, 0 + 0 + 1, 0 + 1 + 0),(0 + 0 + 1, 1 + 0 + 1, 1 + 0 + 0),(0 + 1 + 0, 1 + 0 + 0, 1 + 1 + 0)]`
= `[(2, 1, 1),(1, 2, 1),(1, 1, 2)]`
A2 – 3I = `[(2, 1, 1),(1, 2, 1),(1, 1, 2)] - 3[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
= `[(2, 1, 1),(1, 2, 1),(1, 1, 2)] + [(-3, 0, 0),(0, -3, 0),(0, 0, -3)]`
A2 – 3I = `[(-1, 1, 1),(1, -1, 1),(1, 1, -1)]` .........(1)
adj A = `[(+|(0, 1),(1, 0)|, -|(1, 1),(1, 0)|, +|(1, 0),(1, 1)|),(-|(1, 1),(1, 0)|, +|(0, 1),(1, 0)|, -|(0, 1),(1, 1)|),(+|(1, 1),(0, 1)|, -|(0, 1),(1, 1)|, +|(0, 1),(1, 0)|)]^"T"`
= `[(+(0 - 1) , -(0 - 1), +(1 - 0)),(-(0 - 1), +(0 - 1), -(0 - 1)),(+(1 - 0), -(0 - 1), +(0 - 1))]^"T"`
= `[(-1, 1, 1),(1, -1, 1),(1, 1, -1)]^"T"`
adj A = `[(-1, 1, 1),(1, -1, 1),(1, 1, -1)]`
A–1 = `1/|"A"|` adj A = `1/2 [(-1, 1, 1),(1, -1, 1),(1, 1, -1)]`
A–1 = `1/2 ("A"^2 - 3"I")` ......(Using (1))
Hence proved
APPEARS IN
संबंधित प्रश्न
Find the adjoint of the following:
`[(-3, 4),(6,2)]`
Find the adjoint of the following:
`[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`
Find the adjoint of the following:`1/3[(2, 2, 1),(-2, 1, 2),(1, -2, 2)]`
If `"F"(alpha) = [(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`, show that `["F"(alpha)]^-1 = "F"(- alpha)`
If A = `[(5, 3),(-1, -2)]`, show that A2 – 3A – 7I2 = O2. Hence find A–1
If A = `[(3, 2),(7, 5)]` and B = `[(-1, -3),(5, 2)]`, verify that (AB)–1 = B–1 A–1
If adj(A) = `[(0, -2, 0),(6, 2, -6),(-3, 0, 6)]`, find A–1
Find the matrix A for which A`[(5, 3),(-1, -2)] = [(14, 7),(7, 7)]`
Decrypt the received encoded message [2 – 3][20 – 4] with the encryption matrix `[(-1, -1),(2, 1)]` and the decryption matrix as its inverse, where the system of codes are described by the numbers 1 – 26 to the letters A – Z respectively, and the number 0 to a blank space
Choose the correct alternative:
If |adj(adj A)| = |A|9, then the order of the square matrix A is
Choose the correct alternative:
If A = `[(1, -2),(1, 4)] = [(6, 0),(0, 6)]`, then A =
Choose the correct alternative:
If A B, and C are invertible matrices of some order, then which one of the following is not true?
Choose the correct alternative:
If A is a non-singular matrix such that A–1 = `[(5, 3),(-2, -1)]`, then (AT)–1 =
Choose the correct alternative:
Which of the following is/are correct?
(i) Adjoint of a symmetric matrix is also a symmetric matrix.
(ii) Adjoint of a diagonal matrix is also a diagonal matrix.
(iii) If A is a square matrix of order n and λ is a scalar, then adj(λA) = λn adj (A).
(iv) A(adj A) = (adj A)A = |A|I