Advertisements
Advertisements
प्रश्न
Given A = `[(1, -1),(2, 0)]`, B = `[(3, -2),(1, 1)]` and C = `[(1, 1),(2, 2)]`, find a martix X such that AXB = C
उत्तर
Given A × B × C
⇒ A–1 A × BB–1
= A–1 C B–1
I × I = A–1 CB–1
⇒ X = A–1 CB–1
Let us find A–1 and B–1
A = `[(1, -1),(2, 0)]`
|A| = 0 + 2
= 2 ≠ 0.A–1 exists
adjj A = `[(0, 1),(-2, 1)]`
∴ A–1 = `1/|"A"|` adj A = `1/2[(0, 1),(-2, 1)]`
B = `[(3, -2),(1, - 1)]`
|B| = 3 +2
= 5 ≠ 0.B–1 exists.
adj B = `[(1, 2),(-1, 3)]`
∴ B–1 = `1/|"B"|` adj B = `1/5[(1, 2),(-1, 3)]`
X = A–1 CB–1
= `2 [(0, 1),(-2, 1)] [(1, 1),(2, 2)] 1/5[(1, 2),(-1, 3)]`
= `1/10 [(0 + 2, 0 + 2),(-2 + 2, -2 + 2)][(1, 2),(-1, 3)]`
= `1/10 [(2, 2),(0, 0)] [(, 2),(-, 3)]`
= `1/10 [(2 - 2, 4 + 6),(0 - 0, 0 - 0)]`
X = `1/10[(0, 10), (0, 0)]`
= `[(0, 1),(0, 0)]`
APPEARS IN
संबंधित प्रश्न
Find the adjoint of the following:
`[(-3, 4),(6,2)]`
Find the adjoint of the following:
`[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`
Find the inverse (if it exists) of the following:
`[(5, 1, 1),(1, 5, 1),(1, 1, 5)]`
If `"F"(alpha) = [(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`, show that `["F"(alpha)]^-1 = "F"(- alpha)`
If A = `[(5, 3),(-1, -2)]`, show that A2 – 3A – 7I2 = O2. Hence find A–1
If A = `1/9[(-8, 1, 4),(4, 4, 7),(1, -8, 4)]`, prove that `"A"^-1 = "A"^"T"`
If A = `[(8, -4),(-5, 3)]`, verify that A(adj A) = (adj A)A = |A|I2
If A = `[(3, 2),(7, 5)]` and B = `[(-1, -3),(5, 2)]`, verify that (AB)–1 = B–1 A–1
If adj(A) = `[(2, -4, 2),(-3, 12, -7),(-2, 0, 2)]`, find A
Find adj(adj(A)) if adj A = `[(1, 0, 1),(0, 2, 0),(-1, 0, 1)]`
Find the matrix A for which A`[(5, 3),(-1, -2)] = [(14, 7),(7, 7)]`
If A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]`, show that `"A"^-1 = 1/2("A"^2 - 3"I")`
Choose the correct alternative:
If A = `[(1, -2),(1, 4)] = [(6, 0),(0, 6)]`, then A =
Choose the correct alternative:
If + = `[(1, x, 0),(1, 3, 0),(2, 4, -2)]` is the adjoint of 3 × 3 matrix A and |A| = 4, then x is
Choose the correct alternative:
If A is a non-singular matrix such that A–1 = `[(5, 3),(-2, -1)]`, then (AT)–1 =
Choose the correct alternative:
Which of the following is/are correct?
(i) Adjoint of a symmetric matrix is also a symmetric matrix.
(ii) Adjoint of a diagonal matrix is also a diagonal matrix.
(iii) If A is a square matrix of order n and λ is a scalar, then adj(λA) = λn adj (A).
(iv) A(adj A) = (adj A)A = |A|I