Advertisements
Advertisements
प्रश्न
If A = `[(8, -4),(-5, 3)]`, verify that A(adj A) = (adj A)A = |A|I2
उत्तर
A = `[(8, -4),(-5, 3)]`
|A| = 24 – 20 = 4 ≠ 0.A–1 ecists.
adj A = `[(3, 4),(5, 8)]`
A(adj A) = `[(8, -4),(-5, 3)][(3, 4),(5, 8)]`
= `[(24 - 20, 32 - 32),(-15 + 15, -20 + 24)]`
= `[(4, 0),(0, 4)]` ........(1)
(adj A)A = `[(3, 4),(5, 8)][(8, -4),(-5, 3)]`
= `[(24 - 20, -12 + 12),(-40 + 40, -20 + 24)]`
= `[(4, 0),(0, 4)]` ........(2)
|A|I2 = `4[(1, 0),(0, 1)]`
= `[(4, 0),(0, 4)]` ........(3)
(1), (2) and (3)
⇒ A(adj A) = (adj A)A = |A|I2
APPEARS IN
संबंधित प्रश्न
Find the inverse (if it exists) of the following:
`[(-2, 4),(1, -3)]`
If `"F"(alpha) = [(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`, show that `["F"(alpha)]^-1 = "F"(- alpha)`
If A = `1/9[(-8, 1, 4),(4, 4, 7),(1, -8, 4)]`, prove that `"A"^-1 = "A"^"T"`
If adj(A) = `[(2, -4, 2),(-3, 12, -7),(-2, 0, 2)]`, find A
Find adj(adj(A)) if adj A = `[(1, 0, 1),(0, 2, 0),(-1, 0, 1)]`
A = `[(1, tanx),(-tanx, 1)]`, show that AT A–1 = `[(cos 2x, - sin 2x),(sin 2x, cos 2x)]`
Find the matrix A for which A`[(5, 3),(-1, -2)] = [(14, 7),(7, 7)]`
Given A = `[(1, -1),(2, 0)]`, B = `[(3, -2),(1, 1)]` and C = `[(1, 1),(2, 2)]`, find a martix X such that AXB = C
If A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]`, show that `"A"^-1 = 1/2("A"^2 - 3"I")`
Choose the correct alternative:
If |adj(adj A)| = |A|9, then the order of the square matrix A is
Choose the correct alternative:
If A = `[(1, -2),(1, 4)] = [(6, 0),(0, 6)]`, then A =
Choose the correct alternative:
If A = `[(7, 3),(4, 2)]` then 9I2 – A =
Choose the correct alternative:
If A = `[(2, 0),(1, 5)]` and B = `[(1, 4),(2, 0)]` then |adj (AB)| =
Choose the correct alternative:
If ATA–1 is symmetric, then A2 =
Choose the correct alternative:
If A is a non-singular matrix such that A–1 = `[(5, 3),(-2, -1)]`, then (AT)–1 =
Choose the correct alternative:
Which of the following is/are correct?
(i) Adjoint of a symmetric matrix is also a symmetric matrix.
(ii) Adjoint of a diagonal matrix is also a diagonal matrix.
(iii) If A is a square matrix of order n and λ is a scalar, then adj(λA) = λn adj (A).
(iv) A(adj A) = (adj A)A = |A|I
Choose the correct alternative:
If A = `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]`, then adj(adj A) is