Advertisements
Advertisements
प्रश्न
If `"F"(alpha) = [(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`, show that `["F"(alpha)]^-1 = "F"(- alpha)`
उत्तर
Let A = F(α)
So `["F"(alpha)]^-1 = "A"^-1`
Now A = `[(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`
|A| = `[(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`
Expanding the determinant - along R2 we get
`- (0) + 1[cos^2alpha + sin^-2alpha] - (0)` = 1 ≠ 0
So `"A"^-1` exists
Now `"A"^-1 = 1/|"A"| ("adj A") = 1/1 ("adj A")`= adj A
To FInd adj A: adj A = (Aij)T
`("A"_"ij")^"T" = [(+|(1, 0),(0, cos alpha)|, -|(0, 0),(-sinalpha, cosalpha)|, +|(0, 1),(-sinalpha, 0)|),(-|(0, sinalpha)|, +|(cosalpha, sinalpha), (- sinalpha, cosalpha)|, -|(cosalpha, 0),(- sinalpha, 0)|),(+|(0, sinalpha),(1, 0)|, -|(cosalpha, sinalpha),(0, 0)|, +|(cosalpha, 0),(0, 1)|)]`
= `[(+(cosalpha), -(0), +(sinalpha)),(-(0), +(1), -(0)),(+(-sinalpha), -(0), +(cosalpha))]`
= `[(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`
∴ adj A = `("A"^-1)`
= `("A"_"ij")^"T"`
= `[(cosalpha, 0, -sinalpha),(0, 1, 0),(sinalpha, 0, cosalpha)]`
(i.e) `"A"^-1 = ["F"(alpha)]^-1 = [(cosalpha, 0, -sinalpha),(0, 1, 0),(sinalpha, 0, cosalpha)]`
Given `"F"(alpha) = [(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`
So `"F"(- alpha) = [(cos(- alpha), 0, sin(- alpha)),(0, 1, 0),(-sin(- alpha), 0, cos(- alpha))]`
= `[(cosalpha, 0, sinalpha),(0, 1, 0),(sinalpha, 0, cosalpha)]`
∴ `cos(- theta) = cos theta` and `sin(- theta) = - sin theta)`
Here (1) = (2)
⇒ `["F"(alpha)]^-1 = "F"(- alpha)`
APPEARS IN
संबंधित प्रश्न
Find the adjoint of the following:
`[(-3, 4),(6,2)]`
Find the adjoint of the following:`1/3[(2, 2, 1),(-2, 1, 2),(1, -2, 2)]`
Find the inverse (if it exists) of the following:
`[(-2, 4),(1, -3)]`
If A = `[(5, 3),(-1, -2)]`, show that A2 – 3A – 7I2 = O2. Hence find A–1
If A = `1/9[(-8, 1, 4),(4, 4, 7),(1, -8, 4)]`, prove that `"A"^-1 = "A"^"T"`
If A = `[(8, -4),(-5, 3)]`, verify that A(adj A) = (adj A)A = |A|I2
If adj(A) = `[(0, -2, 0),(6, 2, -6),(-3, 0, 6)]`, find A–1
Find adj(adj(A)) if adj A = `[(1, 0, 1),(0, 2, 0),(-1, 0, 1)]`
If A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]`, show that `"A"^-1 = 1/2("A"^2 - 3"I")`
Choose the correct alternative:
If |adj(adj A)| = |A|9, then the order of the square matrix A is
Choose the correct alternative:
If A = `[(1, -2),(1, 4)] = [(6, 0),(0, 6)]`, then A =
Choose the correct alternative:
If A = `[(2, 0),(1, 5)]` and B = `[(1, 4),(2, 0)]` then |adj (AB)| =
Choose the correct alternative:
If + = `[(1, x, 0),(1, 3, 0),(2, 4, -2)]` is the adjoint of 3 × 3 matrix A and |A| = 4, then x is
Choose the correct alternative:
If A B, and C are invertible matrices of some order, then which one of the following is not true?
Choose the correct alternative:
If ATA–1 is symmetric, then A2 =
Choose the correct alternative:
Which of the following is/are correct?
(i) Adjoint of a symmetric matrix is also a symmetric matrix.
(ii) Adjoint of a diagonal matrix is also a diagonal matrix.
(iii) If A is a square matrix of order n and λ is a scalar, then adj(λA) = λn adj (A).
(iv) A(adj A) = (adj A)A = |A|I
Choose the correct alternative:
If A = `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]`, then adj(adj A) is