हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

If A = [53-1-2], show that A2 – 3A – 7I2 = O2. Hence find A–1 - Mathematics

Advertisements
Advertisements

प्रश्न

If A = `[(5, 3),(-1, -2)]`, show that A2 – 3A – 7I2 = O2. Hence find A–1 

योग

उत्तर

A = `[(5, 3),(-1, -2)]`

A2 = A × A

= `[(5, 3),(-1, -2)][(5, 3),(-1, -2)]`

= `[(25 - 3, 15 - 6),(-5 + 2, -3 + 4)]`

= `[(22, 9),(-3, 1)]`

 – 3A = `-3[(5, 3),(-1, -2)]`

= `[(-15, -9),(3, 6)]`

– 7I2 = `-7[(1, 0),(0, 1)]`

= `[(-7, 0),(0, -7)]`

A2 – 3A – 7I2 

= `[(22, 9),(-3, 1)] + [(15, -9),(3, 6)] + [(-7, 0),(0, -7)]`

= `[(0, 0),(0, 0)]`

∴ A2 – 3A – 7I2 = O2

Post multiply this equation by A–1

A2A– 3A A– 7IA1 = 0

A – 3I – 7A1 = 0

A – 3I = 7 A

A1 = `1/7 ("A" - 3"I")`

= `1/7 [((5, 3),(-1, -2)), -3((1, 0),(0, 1))]`

= `1/7 [((5, 3),(-1, -2)) + ((-3, 0),(0, -3))]`

A1 = `1/7[(2, 3),(-1, -5)]`

shaalaa.com
Inverse of a Non-singular Square Matrix
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Applications of Matrices and Determinants - Exercise 1.1 [पृष्ठ १५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 1 Applications of Matrices and Determinants
Exercise 1.1 | Q 4 | पृष्ठ १५

संबंधित प्रश्न

Find the adjoint of the following:

`[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`


Find the adjoint of the following:`1/3[(2, 2, 1),(-2, 1, 2),(1, -2, 2)]`


If `"F"(alpha) = [(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`, show that `["F"(alpha)]^-1 = "F"(- alpha)`


If A = `1/9[(-8, 1, 4),(4, 4, 7),(1, -8, 4)]`, prove that `"A"^-1 = "A"^"T"`


If adj(A) = `[(2, -4, 2),(-3, 12, -7),(-2, 0, 2)]`, find A


If adj(A) = `[(0, -2, 0),(6, 2, -6),(-3, 0, 6)]`, find A–1 


Find adj(adj(A)) if adj A = `[(1, 0, 1),(0, 2, 0),(-1, 0, 1)]`


Find the matrix A for which A`[(5, 3),(-1, -2)] = [(14, 7),(7, 7)]`


Decrypt the received encoded message [2 – 3][20 – 4] with the encryption matrix `[(-1, -1),(2, 1)]` and the decryption matrix as its inverse, where the system of codes are described by the numbers 1 – 26 to the letters A – Z respectively, and the number 0 to a blank space


Choose the correct alternative:

If |adj(adj A)| = |A|9, then the order of the square matrix A is


Choose the correct alternative:

If A is a 3 × 3 non-singular matrix such that AAT = AT A and B = A-1AT, then BBT =


Choose the correct alternative:

If A = `[(1, -2),(1, 4)] = [(6, 0),(0, 6)]`, then A =


Choose the correct alternative:

If A = `[(7, 3),(4, 2)]` then 9I2 – A =


Choose the correct alternative:

If A B, and C are invertible matrices of some order, then which one of the following is not true?


Choose the correct alternative:

If ATA1 is symmetric, then A2 =


Choose the correct alternative:

If A = `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]`, then adj(adj A) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×