हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Choose the correct alternative: If A is a 3 × 3 non-singular matrix such that AAT = AT A and B = A-1AT, then BBT = - Mathematics

Advertisements
Advertisements

प्रश्न

Choose the correct alternative:

If A is a 3 × 3 non-singular matrix such that AAT = AT A and B = A-1AT, then BBT =

विकल्प

  • A

  • B

  •  I3

  • BT

MCQ

उत्तर

I3

shaalaa.com
Inverse of a Non-singular Square Matrix
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Applications of Matrices and Determinants - Exercise 1.8 [पृष्ठ ४८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 1 Applications of Matrices and Determinants
Exercise 1.8 | Q 2 | पृष्ठ ४८

संबंधित प्रश्न

Find the inverse (if it exists) of the following:

`[(5, 1, 1),(1, 5, 1),(1, 1, 5)]`


If `"F"(alpha) = [(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`, show that `["F"(alpha)]^-1 = "F"(- alpha)`


If A = `[(5, 3),(-1, -2)]`, show that A2 – 3A – 7I2 = O2. Hence find A–1 


If A = `[(8, -4),(-5, 3)]`, verify that A(adj A) = (adj A)A = |A|I2 


If A = `[(3, 2),(7, 5)]` and B = `[(-1, -3),(5, 2)]`, verify that (AB)–1 = B1 A1 


If adj(A) = `[(2, -4, 2),(-3, 12, -7),(-2, 0, 2)]`, find A


If adj(A) = `[(0, -2, 0),(6, 2, -6),(-3, 0, 6)]`, find A–1 


A = `[(1, tanx),(-tanx, 1)]`, show that AT A–1 = `[(cos 2x,  - sin 2x),(sin 2x, cos 2x)]`


Given A = `[(1, -1),(2, 0)]`, B = `[(3, -2),(1, 1)]` and C = `[(1, 1),(2, 2)]`, find a martix X such that AXB = C


If A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]`, show that `"A"^-1 = 1/2("A"^2 - 3"I")`


Decrypt the received encoded message [2 – 3][20 – 4] with the encryption matrix `[(-1, -1),(2, 1)]` and the decryption matrix as its inverse, where the system of codes are described by the numbers 1 – 26 to the letters A – Z respectively, and the number 0 to a blank space


Choose the correct alternative:

If |adj(adj A)| = |A|9, then the order of the square matrix A is


Choose the correct alternative:

If A = `[(2, 0),(1, 5)]` and B = `[(1, 4),(2, 0)]` then |adj (AB)| =


Choose the correct alternative:

If A B, and C are invertible matrices of some order, then which one of the following is not true?


Choose the correct alternative:

If ATA1 is symmetric, then A2 =


Choose the correct alternative:

If A is a non-singular matrix such that A–1 = `[(5, 3),(-2, -1)]`, then (AT)1 =


Choose the correct alternative:

If A = `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]`, then adj(adj A) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×