Advertisements
Advertisements
प्रश्न
Find the inverse (if it exists) of the following:
`[(5, 1, 1),(1, 5, 1),(1, 1, 5)]`
उत्तर
A = `[(5, 1, 1),(1, 5, 1),(1, 1, 5)]`
|A| = 5(25 – 1) – (5 – 1) + 1(1 – 5)
= 5(24) – 1(4) + 1(– 4)
= 120 – 4 – 4
= 122 ≠ 0.A–1 exists
adj A = `[(+|(5, 1),(1, 5)|, -|(1, 1),(1, 5)|, +|(1, 5),(1, 1)|),(-|(1, 1),(1, 5)|, +|(5, 1),(1, 5)|, -|(5, 1),(1, 1)|),(+|(1, 1),(5, 1)|, -|(5, 1),(1, 1)|, +|(5, 1),(1, 5)|)]^"T"`
= `[(+(25 - 1), (5 - 1), +(1 - 5)),(-(5 - 1), +(25 - 1), -(5 - 1)),(+(1 - 5), -(5 - 1), +(25 - 1))]^"T"`
= `[(24, -4, -4),(-4, 24, -4),(4, -4, 24)]^"T"`
adj A = `[(24, -4, -4),(-4, 24, -4),(4, -4, 24)]`
`"A"^-1 = 1/|"A"|`
adj A = `1/112 [(24, -4, -4),(-4, 24, -4),(4, -4, 24)]`
= `1/28 [(6, -1, -1),(-1, 6, -1),(-1, -1, 6)]`
APPEARS IN
संबंधित प्रश्न
Find the adjoint of the following:
`[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`
Find the adjoint of the following:`1/3[(2, 2, 1),(-2, 1, 2),(1, -2, 2)]`
Find the inverse (if it exists) of the following:
`[(-2, 4),(1, -3)]`
Find the inverse (if it exists) of the following:
`[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`
If `"F"(alpha) = [(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`, show that `["F"(alpha)]^-1 = "F"(- alpha)`
If A = `[(5, 3),(-1, -2)]`, show that A2 – 3A – 7I2 = O2. Hence find A–1
If adj(A) = `[(2, -4, 2),(-3, 12, -7),(-2, 0, 2)]`, find A
If adj(A) = `[(0, -2, 0),(6, 2, -6),(-3, 0, 6)]`, find A–1
Find adj(adj(A)) if adj A = `[(1, 0, 1),(0, 2, 0),(-1, 0, 1)]`
A = `[(1, tanx),(-tanx, 1)]`, show that AT A–1 = `[(cos 2x, - sin 2x),(sin 2x, cos 2x)]`
If A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]`, show that `"A"^-1 = 1/2("A"^2 - 3"I")`
Decrypt the received encoded message [2 – 3][20 – 4] with the encryption matrix `[(-1, -1),(2, 1)]` and the decryption matrix as its inverse, where the system of codes are described by the numbers 1 – 26 to the letters A – Z respectively, and the number 0 to a blank space
Choose the correct alternative:
If |adj(adj A)| = |A|9, then the order of the square matrix A is
Choose the correct alternative:
If A is a non-singular matrix such that A–1 = `[(5, 3),(-2, -1)]`, then (AT)–1 =
Choose the correct alternative:
Which of the following is/are correct?
(i) Adjoint of a symmetric matrix is also a symmetric matrix.
(ii) Adjoint of a diagonal matrix is also a diagonal matrix.
(iii) If A is a square matrix of order n and λ is a scalar, then adj(λA) = λn adj (A).
(iv) A(adj A) = (adj A)A = |A|I
Choose the correct alternative:
If A = `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]`, then adj(adj A) is