हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Find the inverse (if it exists) of the following: [511151115] - Mathematics

Advertisements
Advertisements

प्रश्न

Find the inverse (if it exists) of the following:

`[(5, 1, 1),(1, 5, 1),(1, 1, 5)]`

योग

उत्तर

A = `[(5, 1, 1),(1, 5, 1),(1, 1, 5)]`

|A| = 5(25 – 1) – (5 – 1) + 1(1 – 5)

= 5(24) – 1(4) + 1(– 4)

= 120 – 4 – 4

= 122 ≠ 0.A1 exists

adj A = `[(+|(5, 1),(1, 5)|, -|(1, 1),(1, 5)|, +|(1, 5),(1, 1)|),(-|(1, 1),(1, 5)|, +|(5, 1),(1, 5)|, -|(5, 1),(1, 1)|),(+|(1, 1),(5, 1)|, -|(5, 1),(1, 1)|, +|(5, 1),(1, 5)|)]^"T"`

= `[(+(25 - 1), (5 - 1), +(1 - 5)),(-(5 - 1), +(25 - 1), -(5 - 1)),(+(1 - 5), -(5 - 1), +(25 - 1))]^"T"`

= `[(24, -4, -4),(-4, 24, -4),(4, -4, 24)]^"T"`

adj A = `[(24, -4, -4),(-4, 24, -4),(4, -4, 24)]`

`"A"^-1 = 1/|"A"|`

adj A = `1/112 [(24, -4, -4),(-4, 24, -4),(4, -4, 24)]`

= `1/28 [(6, -1, -1),(-1, 6, -1),(-1, -1, 6)]`  

shaalaa.com
Inverse of a Non-singular Square Matrix
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Applications of Matrices and Determinants - Exercise 1.1 [पृष्ठ १५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 1 Applications of Matrices and Determinants
Exercise 1.1 | Q 2. (ii) | पृष्ठ १५

संबंधित प्रश्न

Find the adjoint of the following:

`[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`


Find the adjoint of the following:`1/3[(2, 2, 1),(-2, 1, 2),(1, -2, 2)]`


Find the inverse (if it exists) of the following:

`[(-2, 4),(1, -3)]`


Find the inverse (if it exists) of the following:

`[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`


If `"F"(alpha) = [(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`, show that `["F"(alpha)]^-1 = "F"(- alpha)`


If A = `[(5, 3),(-1, -2)]`, show that A2 – 3A – 7I2 = O2. Hence find A–1 


If adj(A) = `[(2, -4, 2),(-3, 12, -7),(-2, 0, 2)]`, find A


If adj(A) = `[(0, -2, 0),(6, 2, -6),(-3, 0, 6)]`, find A–1 


Find adj(adj(A)) if adj A = `[(1, 0, 1),(0, 2, 0),(-1, 0, 1)]`


A = `[(1, tanx),(-tanx, 1)]`, show that AT A–1 = `[(cos 2x,  - sin 2x),(sin 2x, cos 2x)]`


If A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]`, show that `"A"^-1 = 1/2("A"^2 - 3"I")`


Decrypt the received encoded message [2 – 3][20 – 4] with the encryption matrix `[(-1, -1),(2, 1)]` and the decryption matrix as its inverse, where the system of codes are described by the numbers 1 – 26 to the letters A – Z respectively, and the number 0 to a blank space


Choose the correct alternative:

If |adj(adj A)| = |A|9, then the order of the square matrix A is


Choose the correct alternative:

If A is a non-singular matrix such that A–1 = `[(5, 3),(-2, -1)]`, then (AT)1 =


Choose the correct alternative:

Which of the following is/are correct?
(i) Adjoint of a symmetric matrix is also a symmetric matrix.
(ii) Adjoint of a diagonal matrix is also a diagonal matrix.
(iii) If A is a square matrix of order n and λ is a scalar, then adj(λA) = λn adj (A).
(iv) A(adj A) = (adj A)A = |A|I


Choose the correct alternative:

If A = `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]`, then adj(adj A) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×