English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Given A = [1-120], B = [3-211] and C = [1122], find a martix X such that AXB = C - Mathematics

Advertisements
Advertisements

Question

Given A = `[(1, -1),(2, 0)]`, B = `[(3, -2),(1, 1)]` and C = `[(1, 1),(2, 2)]`, find a martix X such that AXB = C

Sum

Solution

Given A × B × C

⇒ A–1 A × BB1 

= A1 C B1

I × I = A1 CB1

⇒ X = A1 CB1

Let us find A1 and B1 

A = `[(1, -1),(2, 0)]`

|A| = 0 + 2

= 2 ≠ 0.A1 exists

adjj A = `[(0, 1),(-2, 1)]`

∴ A1 = `1/|"A"|` adj A = `1/2[(0, 1),(-2, 1)]`

B = `[(3, -2),(1, - 1)]`

|B| = 3 +2

= 5 ≠ 0.B1 exists.

adj B = `[(1, 2),(-1, 3)]`

∴ B1 = `1/|"B"|` adj B = `1/5[(1, 2),(-1, 3)]`

X = A1 CB1

= `2 [(0, 1),(-2, 1)] [(1, 1),(2, 2)] 1/5[(1, 2),(-1, 3)]` 

= `1/10 [(0 + 2, 0 + 2),(-2 + 2, -2 + 2)][(1, 2),(-1, 3)]`

= `1/10 [(2, 2),(0, 0)] [(, 2),(-, 3)]`

= `1/10 [(2 - 2, 4 + 6),(0 - 0, 0 - 0)]`

X = `1/10[(0, 10), (0, 0)]`

= `[(0, 1),(0, 0)]`

shaalaa.com
Inverse of a Non-singular Square Matrix
  Is there an error in this question or solution?
Chapter 1: Applications of Matrices and Determinants - Exercise 1.1 [Page 16]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 1 Applications of Matrices and Determinants
Exercise 1.1 | Q 13 | Page 16

RELATED QUESTIONS

Find the adjoint of the following:

`[(-3, 4),(6,2)]`


Find the adjoint of the following:`1/3[(2, 2, 1),(-2, 1, 2),(1, -2, 2)]`


Find the inverse (if it exists) of the following:

`[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`


If `"F"(alpha) = [(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`, show that `["F"(alpha)]^-1 = "F"(- alpha)`


If A = `1/9[(-8, 1, 4),(4, 4, 7),(1, -8, 4)]`, prove that `"A"^-1 = "A"^"T"`


If A = `[(3, 2),(7, 5)]` and B = `[(-1, -3),(5, 2)]`, verify that (AB)–1 = B1 A1 


If adj(A) = `[(2, -4, 2),(-3, 12, -7),(-2, 0, 2)]`, find A


If adj(A) = `[(0, -2, 0),(6, 2, -6),(-3, 0, 6)]`, find A–1 


A = `[(1, tanx),(-tanx, 1)]`, show that AT A–1 = `[(cos 2x,  - sin 2x),(sin 2x, cos 2x)]`


Find the matrix A for which A`[(5, 3),(-1, -2)] = [(14, 7),(7, 7)]`


If A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]`, show that `"A"^-1 = 1/2("A"^2 - 3"I")`


Choose the correct alternative:

If |adj(adj A)| = |A|9, then the order of the square matrix A is


Choose the correct alternative:

If A is a 3 × 3 non-singular matrix such that AAT = AT A and B = A-1AT, then BBT =


Choose the correct alternative:

If A = `[(2, 0),(1, 5)]` and B = `[(1, 4),(2, 0)]` then |adj (AB)| =


Choose the correct alternative:

If + = `[(1, x, 0),(1, 3, 0),(2, 4, -2)]` is the adjoint of 3 × 3 matrix A and |A| = 4, then x is


Choose the correct alternative:

If A B, and C are invertible matrices of some order, then which one of the following is not true?


Choose the correct alternative:

If ATA1 is symmetric, then A2 =


Choose the correct alternative:

If A = `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]`, then adj(adj A) is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×