Advertisements
Advertisements
Question
Given A = `[(1, -1),(2, 0)]`, B = `[(3, -2),(1, 1)]` and C = `[(1, 1),(2, 2)]`, find a martix X such that AXB = C
Solution
Given A × B × C
⇒ A–1 A × BB–1
= A–1 C B–1
I × I = A–1 CB–1
⇒ X = A–1 CB–1
Let us find A–1 and B–1
A = `[(1, -1),(2, 0)]`
|A| = 0 + 2
= 2 ≠ 0.A–1 exists
adjj A = `[(0, 1),(-2, 1)]`
∴ A–1 = `1/|"A"|` adj A = `1/2[(0, 1),(-2, 1)]`
B = `[(3, -2),(1, - 1)]`
|B| = 3 +2
= 5 ≠ 0.B–1 exists.
adj B = `[(1, 2),(-1, 3)]`
∴ B–1 = `1/|"B"|` adj B = `1/5[(1, 2),(-1, 3)]`
X = A–1 CB–1
= `2 [(0, 1),(-2, 1)] [(1, 1),(2, 2)] 1/5[(1, 2),(-1, 3)]`
= `1/10 [(0 + 2, 0 + 2),(-2 + 2, -2 + 2)][(1, 2),(-1, 3)]`
= `1/10 [(2, 2),(0, 0)] [(, 2),(-, 3)]`
= `1/10 [(2 - 2, 4 + 6),(0 - 0, 0 - 0)]`
X = `1/10[(0, 10), (0, 0)]`
= `[(0, 1),(0, 0)]`
APPEARS IN
RELATED QUESTIONS
Find the adjoint of the following:
`[(-3, 4),(6,2)]`
Find the adjoint of the following:`1/3[(2, 2, 1),(-2, 1, 2),(1, -2, 2)]`
Find the inverse (if it exists) of the following:
`[(2, 3, 1),(3, 4, 1),(3, 7, 2)]`
If `"F"(alpha) = [(cosalpha, 0, sinalpha),(0, 1, 0),(-sinalpha, 0, cosalpha)]`, show that `["F"(alpha)]^-1 = "F"(- alpha)`
If A = `1/9[(-8, 1, 4),(4, 4, 7),(1, -8, 4)]`, prove that `"A"^-1 = "A"^"T"`
If A = `[(3, 2),(7, 5)]` and B = `[(-1, -3),(5, 2)]`, verify that (AB)–1 = B–1 A–1
If adj(A) = `[(2, -4, 2),(-3, 12, -7),(-2, 0, 2)]`, find A
If adj(A) = `[(0, -2, 0),(6, 2, -6),(-3, 0, 6)]`, find A–1
A = `[(1, tanx),(-tanx, 1)]`, show that AT A–1 = `[(cos 2x, - sin 2x),(sin 2x, cos 2x)]`
Find the matrix A for which A`[(5, 3),(-1, -2)] = [(14, 7),(7, 7)]`
If A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]`, show that `"A"^-1 = 1/2("A"^2 - 3"I")`
Choose the correct alternative:
If |adj(adj A)| = |A|9, then the order of the square matrix A is
Choose the correct alternative:
If A is a 3 × 3 non-singular matrix such that AAT = AT A and B = A-1AT, then BBT =
Choose the correct alternative:
If A = `[(2, 0),(1, 5)]` and B = `[(1, 4),(2, 0)]` then |adj (AB)| =
Choose the correct alternative:
If + = `[(1, x, 0),(1, 3, 0),(2, 4, -2)]` is the adjoint of 3 × 3 matrix A and |A| = 4, then x is
Choose the correct alternative:
If A B, and C are invertible matrices of some order, then which one of the following is not true?
Choose the correct alternative:
If ATA–1 is symmetric, then A2 =
Choose the correct alternative:
If A = `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]`, then adj(adj A) is