Advertisements
Advertisements
प्रश्न
If A = {– 2, 0, 1, 3, 5}, B = {–1, 0, 2, 5, 6} and C = {–1, 2, 5, 6, 7}, then show that A – (B ∪ C) = (A – B) ∩ (A – C)
उत्तर
A = {−2, 0, 1, 3, 5}
B = {−1, 0, 2, 5, 6}
C = {−1, 2, 5, 6, 7}
B ∪ C = {−1, 0, 2, 5, 6} ∪ {−1, 2, 5, 6, 7}
= {−1, 0, 2, 5, 6, 7}
A – (B ∪ C) = {−2, 0, 1, 3, 5} – {−1, 0, 2, 5, 6, 7}
= {−2, 1, 3} ...(1)
A – B = {−2, 0, 1, 3, 5} – {−1, 0, 2, 5, 6}
= {−2, 1, 3}
A – C = {−2, 0, 1, 3, 5} − {−1, 2, 5, 6, 7}
= {−2, 0, 1, 3}
(A − B) ∩ (A − C) = {−2, 1, 3} ∩ {−2, 0, 1, 3}
= {−2, 1, 3} ...(2)
From (1) and (2) we get
A – (B ∪ C) = (A – B) ∩ (A – C).
APPEARS IN
संबंधित प्रश्न
Using the adjacent Venn diagram, find the following set:
A – B
Using the adjacent Venn diagram, find the following set:
B – C
Using the adjacent Venn diagram, find the following set:
(B ∪ C)’
Using the adjacent Venn diagram, find the following set:
A – (B ∪ C)
Using the adjacent Venn diagram, find the following set:
A – (B ∩ C)
If K = {a, b, d, e, f}, L = {b, c, d, g} and M = {a, b, c, d, h} then find the following:
(K ∩ L) ∪ (K ∩ M) and verify distributive laws
If A = {x : x ∈ Z, −2 < x ≤ 4}, B = {x : x ∈ W, x ≤ 5}, C = {− 4, −1, 0, 2, 3, 4} verify A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
Verify A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) using Venn diagrams
If A = `{y : y = ("a"+1)/2, "a" ∈ "W" and "a" ≤ 5}`, B = `{y : y = (2"n" – 1)/2, "n" ∈ "W" and "n" < 5}` and C = `{-1, −1/2, 1, 3/2, 2}` then show that A – (B ∪ C) = (A – B) ∩ (A – C)
Verify A – (B ∩ C) = (A – B) ∪ (A – C) using Venn diagrams